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An intermediate step to modelling behaviour of active matter is understanding interactions of
active objects (AOs) with inanimate matter, which often lead to a range of rich behaviour. We
present a range of simulations of the interaction of a self-energised AO with three-dimensional
granular matter and develop a first-principles theoretical model to describe the observed phenomena.
The AO oscillates horizontally, which causes it to either rise against gravity or sink, depending on the
oscillation amplitude and frequency. We identify two competing mechanisms that drive the vertical
motion. When the AO moves below a critical speed, vc, it generates a jammed stagnant zone ahead
of it, which effects an upward force and leads to the rise. Above vc and certain kinetic energy, the
medium around the AO fluidises and the AO sinks into the layer supporting it. The duration of the
rising and sinking phases depend non-trivially on the AO’s amplitude and frequency leading to an
intricate nonlinear dynamics. We derive the equation of motion for the time-dependent depth from
first-principles and show that its solutions agree well with a wide range of computer simulations,
which we perform within the range of parameters allowed by the finiteness of the simulated system.

Active objects (AOs) possess internal energy sources
that can be used to generate movement by applying
forces on surrounding media. An AO may be a part of
a collection, e.g. schools of fish, flocks of birds, or bac-
terial colonies, interacting with other AOs [1], or it may
interact with inanimate media, such as lizards, scorpions,
and snakes burrowing and ‘swimming’ in sand [2]. While
interacting many-AO populations have attracted much
attention, these are complex and system-specific. In con-
trast, AO-inanimate matter interactions, while also lead-
ing to rich behaviours, are more amenable to theoretical
modelling. Here, we formulate a first-principles theoreti-
cal model for the intriguing dynamics of animals in gran-
ular media. The model comprises an AO submerged in a
granular medium and executing a self-energised horizon-
tal periodic oscillation. This issue is relevant to specific
applications in robotics [3] and animal locomotion in sand
[4], as well as to general understanding of interactions of
AOs with passive particulate media.

The dynamics of intruders in granular media require
understanding the combined effects of gravity, drag and
lift forces. While drag on objects moving in granular
media has been studied in several contexts [5–8], effects
of forces acting normally to the direction of motion
have been less explored [9]. Recent simulations of two-
dimensional systems showed that horizontally oscillating
AOs may either rise against gravity or sink, depending
on the oscillation amplitude and frequency [10]. A
cavity model was proposed to explain the mechanisms
driving this phenomenon, but it fell short of leading
to an equation of motion (EoM) and predict the AO’s
trajectories. Here, we first extend the work to three
dimensions (3D), using simulations at a wide range
of amplitudes and frequencies and varying the AO’s
density, initial depth, size and friction coefficient. We

find that the cavity model does not capture correctly
the dynamics. We propose that the rich dynamics
result from a competition between lift forces, driven by
formation of a stagnant zone (SZ) ahead of the AO, and
gravity, as the layer supporting it fluidises partially at
high velocities. Based on our observations, we derive
an EoM for the AO’s depth and solve it. The good
agreement between the theoretical predictions and the
simulation results supports strongly our theory.

Simulation procedure:
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FIG. 1. The simulated system. Initially, the AO is positioned
at h = h0.

The dynamics of the AO in the 3D system, sketched
in Fig. 1, were simulated with the open-source software
LIGGGHTS [11]. The AO, modelled as a frictional spher-
ical of radius R and mass density ρm, was immersed in a
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granular bed of spheres of diameter R0 = 0.01m and mass
density 2500Kg/cm3, confined to a container of dimen-
sions x×y× z = 1×0.5×1.2m3. The granular bed filled
the space (in metres) −0.5 ≤ x ≤ 0.5, −0.25 ≤ y ≤ 0.25,
and −1.0 ≤ z ≤ 0, with the AO’s initial depth at h0,
measured from the bed’s free surface. We imposed pe-
riodic boundary conditions in the x and y directions, a
solid bottom at z = −1.0m, a free surface at z = 0m,
and Earth gravity g in the −z direction. The particles
interaction potentials were Hertzian and included fric-
tion and dissipation. All the simulation parameters are
detailed Table 1 in the supplementary material (SM).

The initial state was prepared by first dropping bed
particles into the container under gravity, filling it up to
z = −(h0 + R), placing the AO as close as possible to
x = y = 0m on the formed surface, and then pouring
in the rest of the particles. The total number of par-
ticles was 82, 340, yielding a bed particles number den-
sity 164, 680m−3 and a packing fraction p = 4nπR3

0/3 =
0.69 ± 0.01. The effective bed mass density was then
ρb = 2500 × 0.69 = 1725Kg/cm3. The filling simulation
ran until the kinetic energy dissipated to 5× 10−7 of the
original value.

From this, practically static, state, the AO executed
self-energised horizontal oscillations in the x-direction,
x(t) = A sin(ωt), with 0.05m≤ A ≤ 0.25m and 1Hz≤
f = ω/2π ≤ 20Hz. These ranges were chosen to re-
duce to a minimum two finite size effects: an oscillatory
response of the entire bed to very energetic oscillations
and a medium-mediated interaction of the AO with its
image in the periodic domain. The particles trajecto-
ries were evolved using the Verlet algorithm with a con-
stant time step of 10−5s. The bulk of the simulations
were run with an AO radius of R = 0.06m and den-
sity ρm = 5000Kg/m3. To test effects of several relevant
quantities on the dynamics, we ran a large number of
simulations, modifying for many combinations of A and
ω: (i) AO densities ρm = 1000, 2500, 5000, 7500Kg/m3;
(ii) AO radii R = 0.04, 0.06, 0.08, 0.10m; (iii) interparti-
cle friction coefficients µ = 0.1, 0.3, 0.5, 0.7, 0.9; and (iv)
initial depths: h0 = 0.3, 0.5, 0.7m.

Results: We observe that the AO may rise, sink or
stay at the same depth, depending on A and ω. This
confirms that this phenomenon, observed initially in 2D
simulations [10], extends to 3D. In Fig. 2, we plot the
AO’s depth, h(t), for A = 0.1m and all frequencies. The
phase diagram in Fig. 3 shows the initial velocity in the
amplitude-frequency phase space.
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FIG. 2. The sinking and rising of the AO, at oscillation am-
plitude A = 0.1m and frequencies 1Hz≤ f ≤ 20Hz. When
f < 9Hz and f > 14Hz, the AO reaches the surface and the
bottom, respectively. At frequencies 9Hz≤ f ≤ 14Hz, the AO
settles into an equilibrium depth.
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FIG. 3. The initial vertical velocity of an AO, starting from
h = 0.5m, plotted in the amplitude-frequency phase space. At
low frequencies, the AO rises, with the rising rate increasing
until A becomes comparable to the AO’s diameter. At high
frequencies the AO invariably sinks.

The simulations lead to the following key observations.
1. Although unconstrained in 3D, the AO moves in the
x−z plane, with only small fluctuations in the y-direction
(Fig. 1 in the SM).
2. Increasing the frequency generically reduces the rising
rate (see Fig. 3).
3. At low frequencies and all A > 0.05m, the AO ex-
periences a linearly increasing resistance force with x
throughout a stroke (Fig. 4a) up to a maximum that
is proportional to the depth h and independent of A and
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ω: FR,max = Ch, with C = 1770± 10N/m (Fig. 2 in the
SM). When Aω increases above some value, vc, the re-
sistance force stays roughly constant around mid-stroke
(Fig. 4b).
4. When Aω exceeds vc, the AO sinks around the mid-
dle of the stroke, with the sinking duration increasing
with Aω. The value of vc increases from 3.1± 0.1m/s at
depth h = 0.3m and appears to plateau at 4.2 ± 0.5m/s
at h = 0.7m.
5. The rise rate increases with intergranular friction from
µ = 0.1 and saturates around µ ≥ 0.5.
6. The sinking rate increases with both the AO’s specific
density and diameter.
Typical plots of these effects are shown in the SM (Figs.
4-6). In the following, we use these observations to iden-
tify the mechanisms driving the vertical motion, model
them from first principles, and derive a theoretical EoM
for the time-dependent depth, h(t).
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(b)

FIG. 4. Typical examples of the resistance force acting on the
AO in the x-direction. (a) The speed never exceeds vc and
the resistance increases linearly during the entire stroke due
to the formation of a stagnant zone ahead of the AO. (b) The
speed exceeds vc in the region marked by the two dashed red
lines, leading to the disintegration of the stagnant zone and
the resistance force stays constant.

Theoretical interpretations and modelling: The
quasi-planar motion of the AO in the x− z plane (obser-
vation 1), which is expected from the symmetry of the
system, simplifies the analysis and modelling, since the
displacements in the y-direction take place over much
longer time than the oscillation period. The increase
in FR is intriguing and cannot be explained by simple
horizontal drag, which is known to be constant below a
critical velocity [5, 7]. Rather, it suggests a build-up of
a shear-jammed SZ ahead of the AO as it advances. A
similar phenomenon is observed when objects penetrate
granular media [7, 8, 12]. The above observations then
suggest the following picture. The AO pushes particles
forward and out of its way, while shearing the material
normal to the motion direction. At low speeds, a jammed
SZ cone-like forms, effecting rising via a lift force [13],
which we calculate below. This force is a result of the lo-
cal differential hydrostatic-like depth-dependence of the
resistance force against the inclined surfaces of the SZ.

It is also known that an SZ build-up occurs only for
speeds below a critical velocity [5]. Thus, at AO higher
speeds, the SZ disintegrates, reducing the lift force, which
is consistent with observation 4. Moreover, above the
critical velocity not only the SZ but also the entire
medium around the AO fluidises, which effects sinking
into its supporting layer. This means that the critical
velocity and vc(h) of observation 4 are one and the same.
Fluidisation occurs when: (i) the AO’s velocity exceeds
vc(h); (ii) its kinetic energy exceeds the work required
to push against the resistance force. The sinking rate is
expected to increase linearly with the excess energy ki-
netic energy and, therefore, the sinking and rising rates
depend differently on A and ω. This leads to an intricate
competition, modulated by AO’s speed and excess energy
in different parts of the stroke. A rise-sink competition
has been also noted and discussed in 2D simulations [10],
but its driving mechanisms, described above, were not
identified there. In particular, our observations under-
mine the cavity model [10], which presumes that the AO
climbs over particles falling into the cavity left in its wake.
The cavity model predicts a uniform rise throughout the
stroke, while we observe rise at low velocities and sink at
high ones, within the same stroke.

The above picture is the basis for the following model.
When Aω ≤ vc, vsink = 0. When Aω > vc, the AO
may only sink when −τ ≤ t ≤ τ , with cosωτ = vc/Aω.
Whether it sinks during this interval or not depends
on the available excess energy for fluidisation, δE =
βmv2(t)/2 −W , where W is the work done against the
resistance force and β < 1 is the fraction of the kinetic
energy invested in fluidising the support layer. Assuming
equal fluidisation of the medium in y and z directions, we
set β = 1/4. The work depends on the resistance force,
which can be modelled using observations 3 and 4 and
x = A sinωt:

FR =
Ch

2


1+sinωt Aω≤vc
1+sinωt Aω>vc ; t ≤ −τ
1−sinωτ Aω>vc ; −τ <t<τ
1−2 sinωτ+sinωt Aω>vc ; τ≤ t .

(1)
The AO can sink only between −τ < t < τ when δE > 0.
To find the duration of the sink phase, we solve for tu
when δE(tu) = 0. We find

ωtu = arcsin

√
1 + 4γ(γ − sinωτ)− 1

2γ
, (2)

where γ ≡ βmAω2/ [Ch(1− sinωτ)] is a dimensionless
measure of the AO’s kinetic energy. At low energies,
when γ < sinωτ , −T/4 < tu < −τ there is no sinking
and the AO rises only outside the interval −τ ≤ t ≤ τ .
When γ ≥ sinωτ and tu ≤ τ , the AO sinks within the
interval −τ ≤ t ≤ tu, and neither sinks nor rises during
tu ≤ t ≤ τ . When γ ≥ sinωτ and tu > τ , the AO
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sinks within the entire interval −τ ≤ t ≤ τ . Thus, there
are four possible dynamics, one when Aω ≤ vc, which
call case A, and the above three when Aω > vc, which
depend on the relation between tu and τ and which we
call BI, BII and BIII, respectively.

The sinking depth per stroke is expected to be propor-
tional to the excess energy and inversely proportional to
the depth because of the increased difficulty in fluidisa-
tion with hydrostatic-like pressure, δhsink = CsinkδE/h.
Our simulations suggest that Csink ≈ 1 × 10−4s2/Kg.
Integrating δE/(tu + τ) between −τ and tu we find the
total excess energy in this interval and the sinking per
stroke in this regime is

∆hsink =
CsinkCA(1− sinωτ)

2
×

×
[
γ

2
− sinωτ +

sin 2ωθ + sin 2ωτ

4ω(θ + τ)
− cosωθ − cosωτ

ω(θ + τ)

]
(3)

with θ = tu(τ) when tu < τ (tu ≥ τ).
Rising is caused by conversion of the resistance into an

upward lift by the inclined surface of the SZ. The SZ is
generically conical [7, 8, 12] and, for simplicity, we model
the AO and the SZ as joined cone and a half-sphere (Fig.
3. in the SM). The resistance force is proportional to
the hydrostatic-like pressure, Kρbgz [7, 8], and the total
resistance, calculated in detail in the SM, is

FR = πKρbghR
2 sinα . (4)

We also detail in the SM a first-principles calculation of
the lift force:

Fz =
πR3Kρbg cosα sin2 α

3
. (5)

From (4) and (5), we have

|Fz |=
sin 2α

6

(
R

h

)
|FR | . (6)

By construction, α ≤ π/4 and too sharp cones blunt
against the resistance. Previous works show π/6 < α [8,
14, 15]. Thus,

√
3/2 ≤ sin 2α ≤ 1 and, for our purpose,

can be approximated as a constant, 0.93± 0.07.
Fz lifts not only the AO but also a part η (< 1) of the

column of particles above it because of sideways flow.
Altogether, the lifted mass is

M =
2πR3ρb

3

[(
3h

2R
− 1

)
η + 2χ

]
, (7)

where χ ≡ ρm/ρb. Aiming to model the dynamics away
from the surface, we set η = 1. Using (1), (6) and (7) to
integrate Fz/M twice gives the rise. When Aω ≤ vc the
rise during the forward stroke is

∆hrise =
CR sin 2α

24Mω2

(
π2 − 4

)
. (8)

When Aω > vc, the AO rises during the forward stroke
only outside the region −τ ≤ t ≤ τ :

∆hrise =
CR sin 2α

24Mω2

[
λ
(π

2
− ωτ

)2
− 2(1− sinωτ)

]
,

(9)
with λ = 1 for the rise between −T/4 and −τ and λ =
1 − sinωτ between τ and T/4. Using (3), (8), and (9),
gives the depth EoM, dh/dt:

dh

dt
=
ω

π
(∆hsink −∆hrise) . (10)

The nonlinear dependencies of ∆hsink and ∆hrise on A,
ω and h, make a general analytic solution difficult. A
careful inspection of the EoM reveals that, when both
terms are finite, the AO settles eventually at an equi-
librium depth, unless the AO reaches the surface or the
bottom. This conclusion is supported by the numerical
solutions below. In Fig. 5, we compare the simulations
and the solutions for h(t) for A = 0.1m and the frequen-
cies, 2Hz≤ f ≤ 16Hz. The theory captures well which
frequencies equilibrate within the system and the equili-
bration depths. It also models well almost all the initial
rising and sinking rtes, except for some overestimate of
the rise velocity for 10Hz and 12Hz, which we believe is
caused by the system finite size.

f=2Hz
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FIG. 5. A comparison of the theoretical predictions and the
numerical simulations for A = 0.1m, as a typical example.
Shown are all the frequencies for which equilibrates within the
system, as well as choice frequencies at which the AO reaches
either the surface or the bottom. The theory captures well
the main trend at all frequencies, the equilibration depth, and
the rising/sinking initial speeds. The latter is somewhat over-
estimated at frequencies 10Hz and 12Hz, which we attribute
to the system finite size.

Discussion and conclusions: We have considered an
important case study of the interaction of active objects
(AOs) with passive matter - the sinking and rising of an
active self-energised object, horizontally oscillating in a
granular medium. Such dynamics are relevant to mod-
elling lizards burrowing in sand, robotic locomotion in
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granular environments, and survival strategy in quick-
sand. We have identified the two competing mechanisms
that give rise to intricate vertical dynamics: rising at low
speeds, enabled by the formation of a jammed stagnant
zone (SZ) ahead of the AO, and sinking when the kinetic
energy is sufficiently high to fluidise the layer support-
ing it. Based on these mechanisms, we have developed a
first-principles theory for the depth equation of motion.

The SZ develops ahead of the AO only below a critical
velocity, which is slightly depth-dependent. Its cone-like
structure converts the force resisting the motion into a
lift force. We calculate the lift force in different regimes
of the amplitude-frequency phase space and from it the
rate of rising. The sinking rate, which is proportional
to the excess energy available to fluidise the AO’s sup-
porting layer, has also been calculated in the different
regimes. Combining the rising and sinking rates, we con-
structed the dependence of the depth equation motion on
the oscillation parameters.

The theory is supported with an extensive range of
simulations, in which we vary oscillation amplitudes and
frequencies, initial depth, inter-particle friction coeffi-
cient, and AO properties. A phase diagram has been
constructed for the rise-sink behaviour in the amplitude-
frequency plane and the theoretically predicted trajecto-
ries agree well with the numerical simulation results, as
shown in Fig. 5. The theory overestimates slightly the
initial rising rate at the two frequencies for which the AO
equilibrates inside the system. We believe that this is be-
cause the theory applies strictly away from the surface,
which requires larger simulations than we could run.

Nevertheless, although our theory applies well away
from the surface, it is interesting to check its predictions
against real lizards. The Uma Scoparia, whose head mass
is about 4g, burrows in sand by oscillating its head at
A ≈ 0.02m and f ≈ 30Hz ≈ 190s−1 [16]. At the surface,
vc → 0 and almost all the vibration kinetic energy goes
to fluidise the supporting layer. Using our deep-medium
estimate of Csink our solution suggests that it burrows
into the and at a rate of 4cm/s. With a body height of
about 2cm, this means that its head can disappear in less
than a second, which agrees with observations [16].
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