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Distribution of the logarithms of currents in percolating resistor networks. II. Series expansions
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We investigate the distribution of the logarithms, logi, of the currents in percolating resistor networks
via the method of series expansions. Exact results in one dimension and expansions to thirteenth order
in the bond occupation probability, p, in general dimension, for the moments of this distribution have
been generated. We have studied both the moments and cumulants derived therefrom with several ex-
trapolation procedures. The results have been compared with recent predictions for the behavior of the
moments and cumulants of this distribution. An extensive comparison between exact results and series of
different lengths in one dimension sheds light on many aspects of the analysis of series with logarithmic
corrections. The numerical results of the series expansions in higher dimensions are generally consistent
with the theoretical predictions. We confirm that the distribution of the logarithms of the currents is
unifractal as a function of the logarithm of linear system size, even though the distribution of the

currents is multifractal.

I. INTRODUCTION

Multifractal distributions have been the topic of much
recent research. Here we study the distribution of
currents in randomly diluted resistor networks at the per-
colation threshold. The first paper in this sequence' (re-
ferred to as ABH in what follows), contains a detailed re-
view of relevant earlier work. In that paper, ABH
presented a theory for the asymptotic distribution of the
logarithms of the currents [y =—In(i?)] in percolating
resistor networks, with detailed predictions concerning
the moments and the cumulants of this distribution.

In ABH we considered ‘“percolating networks,” i.e.,
randomly diluted resistor networks at the percolation
threshold, p =p., where p is the concentration of con-
ducting bonds, with unit conductance. The results of
ABH concerned the multifractal distribution of currents
as a function of the distance between the electrodes, L.
In particular, at large L, the kth moment ({ y*)) was pre-
dicted to behave as (InL)¥, with universal amplitudes, and
all the corresponding cumulants ({y*).) were predicted
to be linear in InL. Thus, the distribution of the loga-
rithms of the currents is expected to be unifractal as
function of InL, with the same L dependence (proportion-
al to InL) for the ratio of any two consecutive moments
(unlike these ratios for moments of the currents them-
selves, which require an infinite set of independent ex-
ponents).

In addition to the asymptotic behavior, ABH also
found large finite-size corrections, whose relative order
scales as 1/InL. This means that the finite-size correc-
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tions have a much greater impact on finite simulations®
than is the case with the usual power-law corrections.
We now believe that these effects were responsible for
problems in the interpretation of simulation studies? and
series analysis (see below). It is reasonable to infer that
all simulations on realistic sample sizes are strongly
affected by these corrections, and therefore it is impor-
tant to explore the distribution of the logarithms of the
currents on percolating systems with alternative tech-
niques. In the present paper we study the moments and
cumulants of the logarithms of the currents using low
concentration series expansions. Instead of treating ap-
proximately large but finite-sized samples, this technique
averages exactly over all clusters having up to N bonds,
where N is the order up to which the power series in the
concentration p is developed. The asymptotic behavior
of the average moments as p approaches p, reflects their
size dependence at large L. Experience shows® that rela-
tively few terms in such series capture much of the
asymptotic behavior, without severe finite-size effects.
Series expansions were previously used* to study sus-
ceptibilities associated with the 2gth moment of the
currents themselves, yielding the multifractal behavior of
these moments for ¢ >g,. and deviations from multifrac-
tality for g <gq,, for a negative critical value g.. Here we
extend this approach to the study of the logarithms of the
currents. Scaling theory’ usually implies that for p#p,
one should replace L by the pair-connectedness (percola-
tion) correlation length &, « |p.—p|~". Therefore, we ex-
pect that the kth cumulant and moment will diverge near
p,. as In|p,—p| and |In|p. _p||¥, respectively, with correc-
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tions of relative order 1/|In|p,—p||. Indeed, our results
are consistent with such predictions.

Section II below explains the modifications in the
relevant results of ABH required in order to make com-
parisons with the present series analysis. There are two
major changes: First, we study the moments as a func-
tion of p, not L. Second, we impose a unit voltage rather
than a unit current between the electrodes. This yields
finite contributions from all the singly connected bonds,
which had unit current, and therefore zero logarithm, in
ABH. Particularly, this yields nontrivial results in one
dimension, as outlined in Sec. IV below. The derivation
of the series and the details of the methods of analysis are
presented in Sec. ITI. Exact results as well as analysis®™!!
of series for one dimension and on the Cayley tree are
given in Sec. IV, and details of the analysis for dimen-
sions 2 =d <6 are described in Sec. V. We conclude in
Sec. VI with a discussion of the implications of our stud-
ies.

II. DEFINITIONS AND THEORETICAL
EXPECTATIONS

Consider a dilute resistor network, so that each con-
ductance randomly assumes the values 1 or O with respec-
tive probabilities p and (1—p). Consider an arbitrary
fixed cluster, in which a unit current is injected at a
source site x and removed at a sink site x’. As a result, a
current of magnitude i,(x,x’) flows through the bond b
on the cluster. The unnormalized 2qth moment of these
currents is defined ash*!?

my(x,x')=3 i,(x,x)*, (2.1)
b

where the sum contains only bonds with i,70. ABH

considered the normalized average of mq(x,x') over all

configurations of conductances,

M, (x,x")=[m,(x,x")],,/[Ngglav » (2.2)

where [Nggl.,=[mg],, is the average mass of the back-
bone (i.e., the number of current-carrying bonds) (Refs.
13 and 14) connecting the two sites x and x’. For
l<<|x—x'| <& »» one has the multifractal behavior

~ ¥(g)—D
M (x,x’)=Aq|x—x’|¢q B

q (2.3)

where D =1(0) ig the fractal dimension of the backbone,
[Ngplay < |x—x'| 2, and (g) are the multifractal ex-
ponents reviewed in Ref. 1.

The resistance between the two electrodes is given by

R (x,x")=m,(x,x"), (2.4)

and the corresponding voltage is ¥ =R. If, instead of the
unit current, we apply a unit voltage between x and x’,
then the resulting currents become i{”’=i, /R, and their
2gth moment is

mi(x,x)= 3 [i}"(x,x")]%
b

=mq(x,x')/R(x,x’)2".

For large |[x—x'| one expects that one may separate the
averages,15 and therefore!'®

M(;v)z[m;v)]av/[NBB]avoch/[R]ig . 2.6)
Thus, we expect that
(V) _
M(;D)(X,X‘)’—_ I‘T;U)|X—X'|w (q)—Dpg , 2.7

with §'"(q)=P(g)—2qP(1).

Instead of the above averages, we consider here the
susceptibility y'? associated with the “correlation func-
tion” m(;”)(x,x’),“’12

X(q)(p)z 2 [m;v)(x’x,)]av .

x'

(2.8)

Since the sum over all |[x—x’| will effectively be cut off at
|x—x'| ~&,, we expect that, asymptotically (for £, >>1)

X‘p)=T, |t 77", (2.9)

where t=p, —p, ¥ (q)=vi"(g), and ~ means asymp-
totically equal. Note that x'®(p)=[Ngg l.,-

Following ABH, we next consider the unnormalized
moments of ln(i,(,”))z, defined as

A (x,x)=3"[In[;;"(x,x") *|*,
b

(2.10)

where the prime on the summation indicates that the sum
is restricted to bonds b for which 0 <i, <1, and the corre-
sponding susceptibilities

2 mxx)| o,

xv(x,x)=1 av

Xi(p)= (2.11)

where v(x,x’') is the indicator function for percolation:
v=1 if x and x' are on the same cluster and v=0 other-
wise. Note that Ini, is only zero when the bond b con-
nects the two terminals x and x’. Since these terms are
excluded from the sum in Eq. (2.10), we have the relation

¥ (p)=dp+x,(p) . (2.12)

It is easy to convince oneself from Eq. (2.8) that for k = 1

k0"

— 1)k ——x'"(p) (2.13)
( )aqu p

=Xk (P) .
q=0

We next wuse the normalized susceptibilities,

Xe(P)Y=X1(P)/Xo(p), to construct the corresponding cu-

mulants %, e.g., Xo(p)=1 and

Xi=X1=X1/Xo »
X5=x2—(x1?, (2.14)
X5=x3— 3200,
etc. It is now easy to see that, for positive integer k,
Xi(p)=(—1 )k—Qik-ln)((q)(p) (2.15)
dq g=0

[x'?(p) behaves like the partition function in statistical
mechanics.] Using Eq. (2.9), this immediately yields

Xi(p)=c, +dInlt] (2.16)
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with
e & (2.17a)
=(—1)*—InT" 2.17a
Ck aqk q 4=0
and
ak
d,=(—1D ——¢""(q) (2.17b)
aq q=0

Note that ¢, and d; are p independent. Also, ¢, which
represents a correction to the leading logarithmic diver-
gence in Eq. (2.16), depends on ', and is therefore
nonuniversal, while d, depends only on #'"(g) and is
thus universal. When Eq. (2.14) is inverted we obtain

Xk=(X1)k+w(xl)k_2)(§+0(|ln|t]|k—2) (2.18a)
and use of Eq. (2.16) yields
_ % k 1 d, | 1
= —_— +_ — | —_—
X, =(dIn|t]) ’1+d1 ¢y 2(k 1)d1 Tl
+0(|Inlt||7?) (2.18b)

in complete analogy with Eq. (3.5) of ABH. We will ana-
lyze series expansions for the various logarithmic suscep-
tibilities introduced above, namely, the unnormalized sus-
ceptibility ¥, (p) of Eq. (2.11), the normalized susceptibil-
ity x,(P)=Xi(p)/Xo(p), and the cumulant susceptibility
x5 of Eq. (2.14).

As discussed below, we generated series for Y,(p).
Equations (2.13) and (2.18b) imply that

Te(p)=Xop)Xx (p)=Toltl "2(d Inlt))*, (2.19)

where y g =y +¢"(0)=y +vDp.
Finally, Eq. (2.18b) may be used to obtain the universal
amplitude ratio

Rugn = XL — 1 4 [k (k = D)+ 1 =)= m (m —1)
X Xn
(n—1) e
n(n = D]l
+0(|In|t]| 7%, (2.20)

when k +1=m +n.

The above derivation of Eq. (2.18b) works only for pos-
itive integer k, since it uses the cumulants. However,
ABH showed that exactly the same expression also re-
sults from a direct integration over the distribution of
Ini. Taking over their arguments, we expect Eq. (2.18b),
and therefore also Egs. (2.19) and (2.20), to hold for all
(positive and negative) k. Note, however, that the expan-
sion in powers of 1/In|t| becomes inaccurate for large k,
when

(k/d)) 2 |inle]] .

¢ +£(k—1)
1724,

We end this section with some exact theoretical predic-
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tions for the behavior of the various susceptibilities at six
dimensions, and with some estimates for the coefficients
d; in lower dimensions.

In d =6—e¢ dimensions Park, Harris, and Lubensky'?
predicted that to leading order in €

_a
(g+1)Xg+b)’

with @ =e/14 and b = . Using the € expansion of y, this
is equivalent to

P(g)=1+ (2.21)

y+9¥(q)=2—2g+€O@(q)+0(e) , (2.22)
where
o(q) L 34 (2.23)

= +
14(g+1)(g+1/2) = 21

Repeating the renormalization-group solution that led
to Eq. (2.21), we note that, in fact, Eq. (2.22) results from
the expression

20(q)
2+2q ,  (2.29)

X =i+ 14+ S (e~

where C is a nonuniversal constant. In the limit €e—0,
this yields

X' 9(p) < [¢] ~2124||In|2 |22 . (2.25)
Using Eq. (2.15), we thus find
vi~—2mld—2 22| |l (2.26a)
q=0
=—2ln|t|+%%ln|ln|t|] , (2.26b)
and
X5 (p)=e,In|In|z|| (2.27)

for k=2, with e, =(—1)¥2d*®/dg*|,_,. Specifically,
e,=4and e; =12,

From Eq. (2.18a) it follows that-

Xk =(x)¥[1+00n|n|t]| /(In]t])*)] . (2.28)
We now turn to d <6. In d =6—¢€ dimensions Eqgs.
(2.21) and (2.17b) yield

d,=2+Re+0(e), (2.29a)

!
dk=%(2k+1—1)e+0(ez>, k2. (2.290)

Blumenfeld et al.* used Eq. (2.21) as an approximant
for ¥(q) for dimensions d < 6. Matching with known nu-
merical values of ¥(0) (from Dyg), ¥(1) (from the resis-
tance), and ¢¥( )=1, they estimated that b =1.05%0.1,
0.65+0.08, 0.45+0.1, and 0.33%0.3, and @ =1.22+0.01,
0.40£0.06, 0.15£0.04, and 0.05+0.05 in dimensions 2,
3, 4, and 5, respectively. Substituting into Eq. (2.21), and
using Eq. (2.17b), these yield the estimates listed in Table
II. Although this approximant gave excellent fits to the
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available values of (q), it differs significantly in the
derivatives of ¥(q) at ¢ =0, especially for the higher or-
ders. We expect the measurements of d; (such as present-
ed in the present paper) to give guidance on the future
construction of better approximants. Since the deriva-
tives d, are directly related to coefficients in the Taylor
expansion of the multifractal function f(a) near its
peak,! such measurements should also help elucidate the
behavior of that function.

III. CONSTRUCTION AND ANALYSIS
OF THE SERIES

A. Construction

The method used for constructing the series for ¥ is
very similar to that used for ¥'?(p) in Ref. 4. We define
the susceptibilities p; (I') for a given cluster T by

(D)= 3 f(x,x'),

x,x'€l’

(3.1

where fi, is defined in Eq. (2.10). Calculating the suscep-
tibilities involves averaging over all clusters, and can be
written as!’

r
p" (3.2)

|

Xi(p)=(4d*—2d)(21n2)*p?+(12d*—12d*+3d)(21n3)

+ {(80d°— 160d *+ 80d >+ 30d > —25d)(2 In5)*

+(4d*—8d?+4d)[2(2In})*+2(2In1)*+6(2 In7)*—3(2In2)*—4(21n4)*—6(2 In3)*]}p° .

Numerical results up to order p'® are available as com-
puter files on request from Adler. In addition to the mo-
ment series we have obtained series for the backbone
¥'©(p) as given by Eq. (2.12); these extend the earlier
series!'* by three terms and are explicitly given for dimen-
sions 2—6 in Table I.

Everything stated above can be repeated for unit
current boundary conditions, with ¥(q) replacing ¥"(q)
everywhere. We also constructed series for the corre-
sponding susceptibilities, denoted by ¥ (p), to N=11.
These series are also available on request. Note that sing-
ly connected bonds do not contribute to )} (p), hence the
corresponding series start from p*, while ¥, (p) start with

2
p-.
B. Methods of analysis

We have analyzed the different series by fitting them to
several general forms. The first of these has the general
form of Eq. (2.19)
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where n,(I") is the number of bonds in cluster I', W(T';d)
is the number of diagrams per site which are topological-
ly equivalent to I' in d dimensions (sometimes referred to
as the weak embedding constant), and the cumulant sus-
ceptibilities uj (I") are defined by

pr(D)=u (T)— 3 pily) .
yCcr

(3.3)

The summation extends over all subdiagrams y of T,
with I'#y. One should not confuse the cluster cumulant
used here with the statistical cumulants Y; of Egs.
(2.14)-(2.16).

Exact results can be obtained for the one-dimensional
case, and for the case of the Cayley tree (corresponding to
infinite dimension). These will be discussed in Sec. IV.
In intermediate dimensions, the sum (3.2) cannot be cal-

. . ny (")
culated exactly. The summation involves factors of p
for each cluster I'" of n,(I") bonds. Therefore, to calcu-
late the series up to Nth order in p, we need to consider
only diagrams with N bonds at most. We calculated the
above quantities for N =13 and for —10=k =<10. For
each cluster and each pair of terminals x and x’, we
solved Kirchhoff’s equations with unit voltage boundary
conditions. We then calculated the susceptibilities in the
above range of k, in the form

13
Xp)=3 ap(l,mpld™ .

(3.4)
=1
Up to order p°, the result is
3+(32d*—48d>+16d*+4d)(2 In4)*p*
(3.5)
-
— ~Yi 0
X = (p.—p) ln(p,—p)[* . (3.6)

Here we allow 6, to differ from k and allow y, to take
different values for each k. We fitted this logarithmic
form with the method of Adler and Privman.’® This
analysis involves taking Padé approximants to the series

g =(—v) " (p,—p)n(p,—p)
X /_
—ap Xk

The limit of g, as p—p, is 0, /y,. We take Padé ap-
proximants to g, at the exact or most reliable estimate of
P, to obtain graphs of 8, as a function of y.

The second form replaces the logarithmic factors by
nonanalytic confluent corrections,

X . (3.7)

[y« /(p.—pP)]

Xe~Tilp.—p) “[1+ap,—p)+---1, (3.8
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TABLE 1. Series coefficients, b (I) for the backbone series in dimensions 2—6.

I b(l) I b(l)
d=2 d=4
] 2 7 2920900
2 12 8 22242992
3 54 9 166 104 180
4 200 10 1218312688
5 686 11 8821754 244
6 2148 12 63085 682 976
7 6506 13 447047 856 400
8 18 520
9 51962 d=5
10 138992 1 5
1 370514 2 90
12 947 200 3 1215
13 2436084 4 14 420
5 159 665
3 6 1686030
d=3 7 17252795
1 3 8 172236 520
2 30 9 1688750765
3 225 10 16 308 028 890
4 1452 1 155 652 267 495
-’6’ 42 sz; 12 1470375 432940
‘ 18 13 13776257 177 165
8 1374 408 B
9 7010619 . d=6 6
10 34882 170 5 139
1 171153 441 3 ) 178
12 824671212 . 31704
13 3935533761 s 431130
6 5604 876
d=4 7 70 686222
1 4 8 871168 968
2 56 9 10553 814 894
3 588 10 126080210 880
4 5392 11 1489 660 129 206
5 46028 12 17436 318 890 592
6 372840 13 202 525 138 659 828

where I'; and a; are nonuniversal amplitudes. This form
was used for the backbone series (where we believe it to
be correct, with h; =y ) and for illustrative purposes on
some of the other series (where we believe it not to be
correct). We fitted this confluent correction form with
the methods (M1 and M2) introduced by Adler, Moshe,
and Privman,”® and discussed in depth in Ref. 9. In both
these methods transformations are made to eliminate the
effect of corrections to scaling. In M2, one draws graphs
of Padé approximants to the dominant exponent as a
function of the trial correction exponent at a trial thresh-
old value. In M1, one draws graphs of Padé approxi-
mants to the correction exponent as a function of the trial
dominant exponent at a trial threshold value. The pre-
dicted set of (y,A) values is chosen to be within the re-
gion where different approximants give the same results

in both methods, and the predicted critical point is that
for which optimal convergence is seen. (Note that graphs
from both methods are drawn in the same orientation for
ease of comparison.)

In order to allow for the possibility of additional
correction effects that interfere with our evaluations, we
have made the transformation

Inlp.=p) _ 1 (3.9)
Inp, 1-K "’

where, without loss of generality, we may set the critical
value of K to be K. =1. This gives an expansion for p, in
terms of K: p =3 c,K". The series
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T (p) (p.—p) "Elin(p, —p)*[1+ 4, /In(p, —p)+ - - ] 100
p = — =~ — . a
dp +Xo(p) (pe—p) P14+ )
~[In(p, —p)]* e (3.10b)
PP o —p) :

is a special case of the more general form

0 Ay

Y(p)=I|In(p, —p)| * |1+ ——1+ -~ (3.11)
lIn(p, —p)|™*

In both Egs. (3.10a) and (3.11) the - - represent power-

law corrections. When the expression from Eq. (3.9) for p

in terms of K is substituted into Eq. (3.11), it leads us to a

series with the critical behavior

AX

Y[p(K)~(K,—K) *[14a (K, —K)*+ -1 (3.12)

with K, =1. We have thus transformed the logarithmic
corrections into power-law ones. The transformed series
can be analyzed by the methods’ ° discussed above for
series with nonanalytic confluent corrections to scaling.
This analysis is especially easy since K, is known. The
input value of p, can be taken from previous analysis of
cluster statistics whose accuracy is well established.

In addition to the determination of the critical ex-
ponents by the above methods, we have also obtained es-
timates for the different cumulant amplitudes (d; and e;)
and universal moment amplitude ratios (Ry, ,,,) defined
in Egs. (2.16), (2.20), (2.26), and (2.27) above. The ratio
Ry mn was evaluated by dividing and multiplying the
relevant series and then evaluating Padé approximants to
the resulting series at the accurate percolation threshold
values of Ref. 9. A similar approach has been used in the
past’ for percolation amplitude ratios, with excellent
agreement being achieved with exact and € expansion
values.

The cumulant amplitudes d;, were obtained from series
for the cumulants by two slightly different approaches
which, in principle, should give the same results. In the
first approach, d, [see Eq. (2.16)] was evaluated from the
pole-residue plots of Padé approximants to the series for
the first derivative of the cumulant series, % (p). (This
derivative should have a pole at p., with a residue of d.)
In the second approach, this derivative series was multi-
plied by (p. —p) and Padé approximants to the resulting
series were evaluated at the p, values of Ref. 9. The rela-
tionship between these two methods is similar to that be-
tween the usual D log Padé and threshold biased D log
Padé methods. The amplitudes e; for k =2 in six dimen-
sions [see Eq. (2.27)] were evaluated in the spirit of the
latter approach only; the derivatives of the cumulant
series were multiplied by (p, —p)In(p,. —p) to give a series
to which Padé approximants were evaluated at p.. The
first cumulant in six dimensions, eqgs. (2.26b), was studied
in a similar manner.

The straightforward methods used for the amplitudes
do not explicitly allow for further corrections to scaling.

[

In theory such corrections should be taken into account,
however, it is questionable if the relatively short series
contain enough information to make this worthwhile in
practice.

IV. RESULTS IN ONE DIMENSION AND
ON CAYLEY TREES

A. Exact results

In one dimension the sum in Eq. (3.2) can be calculated
exactly. The easiest way to evaluate this sum is to return
to x'9(p), Eq. (2.8). The cluster cumulant of m "’ for a
chain of n bonds is simply n! 729 [the current between the
end points is i’=1/n, and all other pairs (x,x’) cancel
after the cumulant subtraction]. Also W =1. Thus,

4.1)

Starting with the geometric sum, it is easy to check that
for every integer 2g < 1, one has

r2—29)
(1—p)*—2a

where I'(x) is the gamma (factorial) function. Thus, 3"
has a constant gap exponent equal to 2¥(1)=2, and the
distribution is not multifractal. The same result is also
found for all real 2¢g <1, if one replaces the sum (4.1) by
an integral. The difference between the sum and the in-
tegral is of order (1—p)° and is therefore negligible to
the leading order in Eq. (4.2). Using Eq. (4.2) for g near
zero now yields

x'9(p)= [1+0(1—p)], 4.2)

xi=(—1)"—~ak In[(2—2¢q)
dg*

g=0
—28; 4In(1—p)+0(1—p) , 4.3)
1.€.,

Xi=x{=2[¥(2)—In(1—p)]

~2[0.422784335—In(1—p)] , (4.4)
—1
x5 =2k P Y(x) -

=(—2)Kk —1N[&(k)—1], k=2, (4.5)

where W(x) is the digamma function and &(k) is
Riemann’s £ function. Since there is no multifractality in
¥'?, all the cumulants y§ (except the first) are numbers,
associated with derivatives of the amplitude in x'?.

Using Egs. (2.18a) and (4.4) we now see that
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T =xxc=12In(1=p)|*/(1—p)?* . 4.6)

For the Cayley tree, one replaces p” in Eq. (4.1) by
[z/(20)](po)", where 0 =z —1 and z is the coordination
number. Thus, Egs. (4.4)-(4.6) are still valid, but with p
replaced by po, ie., p,=1/0. These should represent
the leading behaviors for dimension d > 6. Note, howev-
er, that at any finite d, one has exponentially small
currents"* that may modify the behavior of x¥'? for some
g <0 and affect the leading behavior of y, for very large
|k|. For the unit current boundary conditions, i, =1 and
X =0, for any such structure in which no loops are per-
mitted.

B. Series analysis in one dimension

Although we know the exact result for d =1, it is in-
structive to analyze the series expanded to any desired or-
der from the exact expressions. Since i”’=1/n, Egs.
(3.1)-(3.3) yield w$=n(nn®*,  and therefore
Xk (p)=2;°=1n(lnn2)kp ". (We note that series derived
from this definition agree perfectly with one-dimensional
series calculated from the general formalism, as expect-
ed.)

Unless explicitly noted, all results are given for Y,
which should behave as in Eq. (4.6). A typical result
from the method explained just after Eq. (3.6) for k = —2
is shown in Fig. 1(a), for a series with 20 terms. We have
analyzed ¥, /p?, since the first two terms in the expansion
are zero, and plotted 6, versus y,. The exact form gives
Y=Y _,=2and 6, =k =0_,=—2. We see that all the
Padés in the figure (we have selected diagonal and near
diagonal ones) pass through the point
(y_,=2,6_,=—2) as expected. Similar quality of con-
vergence is found for 20 terms for —4 <k <6. However,
for larger positive k values there is a general downgrad-
ing of quality of convergence. For k = —4 we find that
the approximants to 6, as a function of y; do not con-
verge to the correct value of (v, =2,0, =k) and pass in-
stead through the origin, indicating the wrong “result”
Y% =0, =0. This implies that the series in question do
not appear to have the expected singularity at p =1.0.
An example of this behavior for kK = —6 is given in Fig.
1(b).

In Fig. 2, we plot estimates of y, [Eq. (3.6)] or A, [Eq.
(3.8)] versus k from several different analyses of the 20-
term series. The results for ¥, are indicated by the solid

circle symbol. Above k = —3 we obtained the expected
exact value v, =2. However, there is an apparent cross-
over near k = —4 to an absence of singularity. Since we

know that there is no real crossover from y, =2 to O in
one dimension, we conclude that this is a numerical prob-
lem for this method of analysis caused by shortness of the
series. To test this we extended the series further. The
series for k =—4 and —5 indeed gave the expected con-
vergence to ¥, =2 for some 25-28 terms. Although it is
quite easy to generate longer series to extend this test to
even higher k values, it is somewhat inconvenient to car-
ry out the logarithmic analysis for series over 30 terms,
and the improvement as we extended the series for
k > —5 was rather slow. Thus, instead of trying to deter-

mine whether we can obtain a singularity for, say,
k = —6 for the longer series, we investigated the effect of
reducing the length of the series with smaller |k| values.
In fact, we are actually more interested in the behavior of
the shorter series in order to help analyze the series in
higher dimensions. We carried out the analysis for
different lengths for k = —3 and illustrate the results for
23 terms and 11 terms in Figs. 1(c) and 1(d). We see that
the 23-term series passes through the point
(y—3=2,0_3=—3) as it should, but the 11-term series
fails to pass through that point. We conclude that the
apparent absence of a singularity for the lower negative
moments is an artifact of the (relative) shortness of the
series.

At k =0 there is no logarithmic correction, and there-
fore Eq. (3.8) is the correct form. Indeed, in this case we
fitted the series to Eq. (3.8) and observed the expected
v =7vp=2. Furthermore, we found that the graph of y
as a function of A, for this case (not shown) is a perfect
example of confluent correction analysis for a series with
only analytic (A;=1.0) corrections to scaling and reso-
nances at A;=1 and 1 (Ref. 11) for 11 terms. For 20
terms the resonances disappear, in a similar manner to
that described in Appendix D of Ref. 11.

We have also attempted to fit the one-dimensional
series for k0 with Eq. (3.8). This is obviously not the
correct form for these series since we have just shown
that their exact form includes a logarithmic correction.
However, we wanted to see what results we would obtain
without being biased by the theoretical predictions. The
results of this analysis are presented as h; in Fig. 2.
Series of both 11 (indicated by X) and 20 (indicated by
+) terms have been analyzed. Results are given either
for best convergence or for A;=1.0, with very little
discrepancy between the two criteria in any case. We see
that there is a somewhat better convergence for the 20-
term series, although we do not obtain the expected
h, =2 for any k0. There were no signs of any intersec-
tion region which would indicate a strong nonanalytic
confluent correction to scaling.

Looking at the estimates of 4, at A;=1.0 (presented in
Fig. 2) it is rather amazing how strongly these effective
exponent values deviate from two when the logarithmic
correction is not allowed for. These results show that the
power-law correction of Eq. (3.8) does a bad job of mim-
icking the correct logarithmic form of Eq. (3.6). These
h, estimates are clearly contrary to our expectation that
h, =2 for all k. However, they are of some interest be-
cause they show that if we were to analyze the one-
dimensional moments of the current logarithms without
suspecting logarithmic corrections, we might conclude
that instead of having a constant ¥, we had k-dependent
values with a gap. (Looking at the A, values for k >0
gives the impression that while this gap seems k indepen-
dent for the 20-term series, it seems to increase with k for
the 11-term series. From the exact form we know that
for a long enough series /; should be constant, and there-
fore that we should expect a decrease in all A, towards
the correct constant value as the series length increases.)
The apparent observed gap reflects the fact that this
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analysis mimics the correction |In(1—p)|* as (1—p)**,
with a small x (which should decrease as the series
lengthens.) It is clear from the above that the way to ex-
clude such apparent behavior, with a gap, is by studying
the dependence of the behavior on the series length.
When the deviations are spurious they will become less
marked as the series length increases. It should be noted
that for this case the number of terms needed to actually
obtain a constant h; was more than the maximum (30).
Another moral of this is that it is helpful to have theoreti-
cal guidance for the expected singular form.

V. RESULTS IN HIGHER DIMENSIONS
A. Backbone exponents

There is one additional matter of concern that requires
attention before we can discuss our results for the mo-
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FIG. 1. Graphs of Padé approximants to 6, as a function of 7, for the one-dimensional moments ¥/p? for (a) 20 terms; k = —2,
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ments. This is the question of the determination of y, for
the case of Kk =0. We shall call this exponent y 5 because
it is the same exponent as the backbone susceptibility ex-
ponent. The backbone susceptibility exponent is related
to the backbone fractal dimension, Dy, via the scaling re-
lation Dy =(yz—v)/v. For two and three dimensions,
Herrmann and Stanley found from simulations!?
Dp=1.62%0.02 and 1.74+0.04, respectively. These im-
ply (using exact exponents in two dimensions and y =1.8
and v=0.88 in three dimensions) ¥ 5 =4.54+0.02 (d =2)
and y3=3.33%0.10 (d =3). The tenth-order series esti-
mates of Hong and Stanley'* lead to yz=4.7940.05
(d =2)and y5=3.41%0.07 (d =3).

We have made our own determination from our back-
bone susceptibility series (see Table I). This determina-
tion has been made using the confluent form [Eq. (3.8)],
as we have no reason to suspect logarithmic corrections

(b) 20 terms; k = — 6, (c) 23 terms; k = —3, (d) 11 terms, k = — 3. The exact results are indicated by asterisks.
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one-dimensional 20- and 11-term series. ¥, are indicted by @
(20 terms) and h, are indicated by + (20 terms) and X (11
terms). The points indicated by @ have 6, =k and the others
have 6, =0 and A;=1.0 except for k = —4 where A, > 1.0. The
exact result is y, =2.0 for all k.

at k =0. We find from this analysis at the best A, conver-
gence

yp=4.45+0.08 , A, =1.7+0.3, d=2, p,=0.5,
Yp=3.52£0.08, A,=1.24+0.2, d=3, p,=0.2492 ,
and

yp=3.45+0.08 , A;=1.040.2, d =3, p,=0.2486 .

The three-dimensional results have essentially the same
correction exponent, of order 1.1£0.3, as the usual per-
colation susceptibility'® but the two-dimensional value is
higher. If we assume that the backbone susceptibility
should have the same leading correction exponent as the
usual percolation susceptibility!® then for d =2 we would
have A;=1.25+0.15,'® which gives y 3 =4.554+0.10. We
see that this ¥ value is in excellent agreement with the
Monte Carlo result of Ref. 13 but does not agree so well
with the series result of Ref. 14 where allowance was not
made for corrections to scaling. The agreement with
Monte Carlo simulations suggests that the correction ex-
ponent may be the same as the usual one, as might be ex-
pected theoretically.!® Our three-dimensional result is a
weak function of the p, choice, and at the currently ac-
cepted’ p.=0.2488 we have y,=3.4840.08 and
A;=1.1£0.2. Throughout the convergence range the
three-dimensional value is higher than both the previous
recent evaluations. Both our values do agree, however,
with the older Monte Carlo simulations of Kirkpatrick,’
who found y;=3.38-3.64 (d =3) and y=4.45-4.55
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(d =2). Illustration of these evaluations can be found in
Figs. 3(a) and 3(b), where we present graphs from M2 in
d =2 and M1 in d =3, respectively. We surround the re-
gion where the different Padé approximants appear to
best converge with boxes and illustrate the two-
dimensional A, value from the usual susceptibility series
with an asterisk. For each dimension we chose to display
that method which gave the clearest convergence, but
note that in each case the other method gives compatible
results. We see that the series value of Ref. 14 for two di-
mensions corresponds to A;=1.0, as expected from the
lack of allowance for corrections there. These series are
very short for reliable determination of correction values,
although we would hope that they are long enough to
determine dominant exponents reliably.

4.8

o

4.4

4.0 T e — r T
0.0

3.8

78
3.4+

3.0 4— - : .

FIG. 3. Graphs of Padé approximants to ¥ as a function of
A, for the backbone series with (a) two dimensions using M2
and (b) three dimensions using M1.
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B. Critical exponents for k0

Let us now consider the series in two and three dimen-
sions, for k0. In view of the potential ambiguities we
encountered in our unbiased analysis of the one-
dimensional series, it is helpful to recall the general
theory presented in Sec. II. There it is entirely clear [see
Eq. (2.19)] that ¥, =7y . We therefore used Eq. (3.6) with
Y =7vp to determine 6, from the series. As described
below Eq. (3.7) in Sec. III B, the determination was made
by generating graphs of Padé approximants to 6, as a
function of trial ¥, and then reading off the value of 6,
at our accurately determined values of y 5. (In addition
to the analysis for y, =y, we began, but have not ex-
plicitly summarized, an analysis based on the possibility
that y, v g with some 6, 70. These calculations failed
to converge to any consistent exponent values.)

We present typical graphs of our results in Fig. 4(a) for
6, in d =2 and in Figs. 4(b) and 4(c) for 6, and 60, respec-
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tively, in d =3. A summary of our estimates for 6, for
general k >0 is given in Fig. 5, where it can be seen that
for 0=k =6 in d =2 and for 0=k =3 in d =3, 6, =k.
For larger k values there is a systematic deviation with
6, being a little larger than the predicted (2.19) value of
k. Results of the analysis for k =—1 and —2 gave 6, =k
with similar quality of convergence as that in Fig. 4.
However, below k& = —3 the situation is not so clearcut.
As in one dimension, our series again suggest that ¥, —0
as k decreases below k = —3. In one dimension the exact
form told us that this was spurious. In higher dimensions
we cannot at present propose any numerical method to
further investigate this problem based on the series at
hand at this time. We conclude that our numerical re-
sults show that there is the same qualitative behavior in
two and three dimensions as in one dimension. Wherever
the series are not too short we see agreement with the
theoretical predictions.

It is also of interest to summarize the results obtained
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92 93 1
0.0 1 001
-4.0 T T . 1\ . . . -4.0 T v T T T . :
6.4 4.8 3.2 16 4.8 3.2 1.6 0.0
% %
8.0
k / (c)
40
6,
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-40 : —t — ,
4.8 3.2 1.6 00

"

FIG. 4. Graphs of Padé approximants to 8, as a function of ¥, for 11 terms for ¥, /p2 with (a) k =2, two dimensions, (b) k =3,
three dimensions, and (c) kK =1, three dimensions. The exact y, =7 are indicated by arrows.
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FIG. 5. Graph of 0, estimates as a function of k for the two-
and three-dimensional ¥/p? series, indicated by @ and X, re-
spectively. The error bars are composites of the errors in 6 and
in Yp and are explicitly given for the two dimensional values.
The three dimensional errors have similar magnitude but are
centered on the three-dimensional 0, values. 6, for 3*¢/dp?
are very close to these values. The line 6, =k is drawn for com-
parison.

from fitting to Eq. (3.8), which we believe to be incorrect.
We studied several series, including 9%y, /9p2,
(3%« /0p)/p, and X, /p%, with both M1 and M2. We
again found that for positive k there is an apparent varia-
tion of h; as a function of k. This is strongest for
3%, /9p? in two dimensions and weakest for ¥, /p? in
three dimensions. The error bars are extremely large
here, and the curvature varies for different derivatives.

FIG. 6. Graph of 8, estimates as a function of k for the two-
and three-dimensional ¥’'/p? series, indicated by @ and X, re-
spectively. The error bars are composites of the errors in 6 and
in yp and are explicitly given for the two-dimensional values.
The three-dimensional errors have similar magnitude but are
centered on the three-dimensional 6, values. 8, for 3%¢/dp?
are very close to these values. The line 8, =k is drawn for com-
parison.
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Accordingly, and in view of the theory, (which gives
h, =vp), we discard this analysis.

The analyses of the previous subsections confirm be-
havior of the type of Eq. (3.6), but for larger k, 6, does
not appear to be exactly k for d > 1. One possible ex-
planation is that higher-order corrections interfere with
the analysis for the larger values of k. In order to remove
one possible type of interfering corrections [those de-
scribed in Eq. (3.10)] we have made the transformations
(3.9) discussed above. The transformed series indeed gave
poles at the expected K, =1 with the expected analytic
correction to scaling. However, we again obtained slight
deviations from the exact 6,=k. (For 6, we quote
1.240.3, and conclude that while for small k, 8, =k, this
does not seem to be true for kK =3.) These deviations in-
dicate that our series appear to have some additional
complications that lead to effective corrections to the (rel-
atively) short series. We note'® that our methods M1 and
M2 provide no improvement over a simple (threshold
biased) D log Padé method when the corrections are ana-
lytic as in this case. Thus, our analysis of the series in K
did confirm the nontrivial prediction that A, =1, but
yielded no improvement on the estimates of 6, .

In addition to ¥; we have also analyzed ¥} (p), calcu-
lated for the unit current boundary condition. A graph
of 6, versus k is given in Fig. 6 for positive k (negative k
failed to converge). Results are similar to those for x.

C. Critical amplitudes

In order to determine conclusively whether the form of
Eq. (2.19) can be observed in the finite series, we turned
to the evaluation of the cumulant amplitudes d;, with the
techniques described above. If the series yield estimates
of d,, which are in general agreement with those from
the approximants cited in Table II, then we will gain
confidence that the behavior of Eq. (2.16) holds and that
correction terms are interfering with the exponent

TABLE II. Results for the cumulant amplitudes, d,, Eq.
(2.17b). The approximant is based on Eq. (2.21), with the values
for the constants @ and b being given in the text following Eq.
(2.29).

d Series Approximant
First cumulant
2 5.0+1.0 4.9
3 3.4+0.4 3.8
4 3.0£0.10 3.2
5 2.48+0.08 2.7
Second cumulant
2 8.01+2.0 6.6
3 4.0+0.2 6.0
4 1.8+0.4 5.4
5 0.8+0.2 4.0
Third cumulant
2 16.0+4.0 26.0
3 3.2+.08 32.0
4 0.4+0.16 38.0
5 ~0 37.0
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analysis. If the d; estimates are of a high quality, and if
they disagree with the approximant in Table II, then we
will have a very nice bonus because, as noted above, there
is independent motivation for accurate evaluation of d,
in order to improve the quality of approximants of the
type discussed in Ref. 4.

For the first approach to the amplitude analysis (see
end of Sec. III B) in d <6, we obtained the results given
in the first column of Table II. A sample pole-residue
plot is given in Fig. 7 for the case of the second cumulant
in d =4. The second approach gave similar results, with
good consistency between different Padé approximants.
In the second approach we did not find a strong depen-
dence on threshold choice within the range of thresholds
given in Ref. 9.

In order to compare the series for the first cumulant in
six dimensions with the predicted equation (2.26b) it was
necessary to subtract the additional —2 In|p,. —p| contri-
bution. This subtraction led to a series whose amplitude
was strongly threshold dependent and in comparison
with the exact e; =2, we quote 0.9 at p, =0.0940 and
1.26 at p, =0.0942 from the [5,5] Padé approximant and
consistent values for other high central approximants.
(The [m,n] Padé approximant is the ratio of polynomials
of degrees m and n that are used to approximate a power
series. It is believed?' that that highest central and
nearest diagonal approximants provide the best approxi-
mation for the series. [5,5] is the highest central approxi-
mant for our cumulant series.) For e, of the higher cu-
mulants, we did not observe a strong p, dependence.
However, there is considerable scatter between different
approximants. For e, the [5,5] approximant gives 2.3 at
p.=0.0942 whereas others such as [4,4] give 3.8 in far
better agreement with the exact e, =4. For the third cu-
mulant convergence is very poor.

The universal amplitude ratios Ry ,,, have been evalu-
ated for several cases. Equation (2.20) predicts that
Rypmn =1+ f (kl,mn)d, where

flkl,mn)=[k(k—1)+I1(I—1)—m(m —1)—n(n —1)]
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FIG. 7. Pole-residue plot of an amplitude as a function of
threshold for the second cumulant in four dimensions.

5781

and where 8=d,/(2d,In|p,—p|) is p dependent but
should be independent of k, I, m, and n. Very close to p,,
8 should be extremely small, and we expect that Ry, .,
will be close to unity. We calculated Padé approximants
for the ratios Ry, ,,, at the most accurate available values
of p., i.e., those estimated from 15-term series for d >2 in
Ref. 9 and also at the exact p, =1 for d =2.

The measured values of Ry, ,,, were indeed close to
unity in all dimensions below 6, but were not exactly
equal to unity. We interpret the small differences as re-
sulting from the fact that our 13-term series would yield
effective thresholds which are somewhat different from
the values we actually used. Assuming
Ry mn =1+ f(kl,mn)8, we estimated 8. In two dimen-
sions, we made two different evaluations of 8, averaging
separately over cases of |f(kl,mn)|=2 and
|f(kl,mn)|=8. For each (kl,mn) set we averaged over
four of the five highest approximants (thereby discarding
several approximants that are extremely different from
the average) to find central average values of §=0.048 for
| f (kI,mn)| =2 and §=0.043 for |f (kl,mn)|=8. As usu-
al in Padé analysis, errors are difficult to determine, but
all the approximants that are not extremely different fall
within some 10% of the average values cited above. In
d >2, 8 is small, but it has larger scatter than for d =2.
This analysis shows that the finite series estimates do
behave according to the prediction of Eq. (2.20), thereby
confirming that Eq. (2.19) correctly describes the mo-
ments.

VI. DISCUSSION AND CONCLUSION

We have described the transformation of the results of
ABH into a form suitable for comparison with low con-
centration series and generated series for moments of the
distribution of the logarithms of the currents in percolat-
ing resistor networks. Extensive detailed predictions for
the behavior of the moments and of cumulants and ratios
derived therefrom have been given and compared with
series for moments, cumulants and ratios.

From this project we reach the following conclusions.

(1) We extended the series for the percolation backbone
by three terms in general dimension. In two and three di-
mensions our new ¥ p=4.551+0.10 and 3.4810.08 give
fractal dimensions Dy =1.62+0.08 and 1.91%0.15, re-
spectively. The two-dimensional results are in excellent
agreement with the simulations of Refs. 13 and 20, but
not with the shorter series of Ref. 14. In three dimen-
sions our backbone exponent and fractal dimension are
higher than those of both Refs. 13 and 14, and in agree-
ment with Ref. 20.

(2) By comparing our series analysis to exact results in
one dimension, we were able to assess the validity of vari-
ous analysis procedures. The main conclusion was that
knowing the correct asymptotic form to which to fit was
very important.

(3) We analyzed series for the moments of the distribu-
tion of the logarithms of the currents Y, (p) as defined in
Eq. (2.11), according to the behavior
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Xep) = (p.—p) " lIn(p, —p)|** .

Our results, shown in Fig. 5, are consistent with the
theoretical prediction 6, =k.

(4) We attempted to determine the amplitudes, d;, in
the cumulant susceptibility x4 (p) discussed in Egs. (2.15)
and (2.16). Because the d,’s are proportional to the kth
derivative of the “noise” exponent #(q), they are univer-
sal. For kK =1 and 2 our series determinations are more
accurate than existing simple approximants to ¥(q).

(5) We also studied amplitude ratios, Ry, ,,,,,, defined in
Eq. (2.20), which are expected to be universal. Our re-

sults, given in Sec. V B, are consistent with the theoreti-
cal prediction im, ,, Ry, = 1.
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