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We show that the general evolution of the tangent to a curve in three-dimensional
space can be transformed to a modified form of the Belavin–Polyakov equation.
Using this, we find a rich variety of exact instanton and twist solutions for several
classes of evolution. Certain physical applications are also discussed. © 1997
American Institute of Physics. @S0022-2488~97!02410-9#

I. INTRODUCTION

Many problems in physics can be modeled in terms of curves in three-dimensional space. A
vortex filament in a fluid,1 a particle trajectory, and a polymer chain are obvious examples of
space curves. Less obvious an example is the magnetic moment vector along a classical magnetic
spin chain, where the magnetic moment can be regarded as defining the tangent to some space
curve.2 The study of the evolution of a space curve is therefore useful in many physical applica-
tions. Several years ago, Lamb3 analyzed the equations for a moving curve represented by two sets
of Frenet–Serret equations4 for the tangent, normal, and binormal vectors to the curve. On im-
posing compatibility conditions on these vectors, coupled nonlinear partial differential equations
for the curvature and torsion of the curve can be obtained. He showed that under certain conditions
these turn out to be integrable, soliton-bearing equations5 such as the nonlinear Schrödinger
equation, sine-Gordon equation, etc., indicating that the underlying curve evolution is also inte-
grable. In such cases, a method proposed by Sym6 can be used in principle to obtain the solution
to the curve evolution, using the Lax pair of the corresponding soliton equation. In general,
though, the reconstruction of a three-dimensional evolving curve using the solutions for the cor-
responding curvature and the torsion is a nontrivial task. In recent years, there has been renewed
interest in such geometric connections and their various ramifications.7

In this paper, we adopt a different approach to this problem. Instead of analyzing the solv-
ability of the coupled ~scalar! equations for the curvature and torsion, we ask under what condi-
tions the fundamental ~vector! equations of curve evolution ~viz., the two sets of Frenet–Serret
equations! can themselves be reduced to a solvable form. The advantage of this approach is that
the moving three-dimensional curve can be constructed directly from the known solution of the
evolving tangent vector. We first show that for a wide class of evolutions, a modified form of the
Belavin–Polykov equation8 for the tangent arises in a natural fashion. Using this result, we
proceed to analyze new special classes of evolution kinematics. In particular, we find that in
transformed coordinates the solution for the tangent vector takes on the form of instanton and twist
solutions. Physical applications to the kinematics of a polymer chain and the dynamics of an
inhomogeneous antiferromagnetic chain are discussed.

II. GENERAL CURVE EVOLUTION EQUATIONS

Let us consider a curve embedded in three-dimensional space, described in parametric form
by a position vector r5r(s), s being the usual arclength variable.4 Let t5rs be the unit tangent
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vector along the curve. We denote by n and b, respectively, the principal normal and binormal to
the curve. The triad of unit vectors ~t,n,b! represents a locally orthonormal system that is known
to satisfy the Frenet–Serret equations,4

ts5Kn, ns52Kt1tb, bs52tn, ~2.1!

where the subscripts denote d/ds . The curvature K and the torsion t are given by

K5~ts•ts!
1/2, t5t–~ts3tss!/K2. ~2.2!

We now consider the evolution of this curve with time u , so that r5r(s ,u). The evolution of the
triad ~t,n,b! can be written quite generally in a form similar to the Frenet–Serret set ~2.1!:

tu5gn1hb, nu52gt1t0b, bu52hn2t0n. ~2.3!

The scalars g , h , and t0 along with appropriate boundary conditions completely determine the
dynamics of the curve. Note that in the time evolution of t there is an additional term in the b
direction. The reason for the absence of such a term in the space derivatives is that one has the
freedom to align ts in the direction of the normal n, but once this is done, the time derivative can,
in general, have both n and b components. In the following discussion we shall limit ourselves to
nonstretching curves, requiring that the unit triad satisfy the compatibility conditions

tus5tsu , nus5nsu , and bus5bsu .

With straightforward manipulations, these conditions can be shown to lead to the following rela-
tions between the above scalars:

Ku5gs2th , tu5~t0!s1Kh , hs5~Kt02tg !. ~2.4!

The three Eqs. ~2.4! relate the five ‘‘curvatures’’ K , t, g , h , and t0 , suggesting that only two of
these scalar functions are independent. Indeed, we shall see below that, in order to specify the
evolution of the tangent vector t, all we need is two combinations of the quantities g , K , and h .
We now note that Eqs. ~2.1!–~2.3! imply quite generally, the following vector relation:

ts3tu5Kht. ~2.5!

Taking the cross product of ~2.5! from the left with ts , and recalling that we have t–ts5t–tu50
~because utu2

51!, we obtain

~ts–tu!ts2~ts–ts!tu5Kh~ts3t!. ~2.6!

From Eqs. ~2.1! and ~2.3!, we identify

ts–tu5Kg , ts–ts5K2, tu–tu5g2
1h2. ~2.7!

Substituting relations ~2.7! in ~2.6!, and excluding the trivial case K50, we have

gts2Ktu5h~ts3t!. ~2.8!

Taking the cross product of Eq. ~2.8! with t twice in succession yields the two equations

ts5~btu2ats!3t,
~2.9!

tu5„atu2@~a2
11 !/b#ts…3t,
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where a5g/h , b5K/h . Here h is assumed to be nonzero. ~The special case h50 is treated
separately below.! Although the second equation in ~2.9! is obtained directly from the first and is
therefore not independent, we write it down explicitly to simplify later manipulations. Thus, any
one of the relations ~2.8! and ~2.9! describes the general evolution of an arbitrary curve in three
dimensions and is in effect the starting point of our analysis.

Before getting down to the analysis of the general case, we first discuss two special cases for
which exact solutions can be obtained. These cases are not only of interest in their own right, but
are also of help in understanding the more general treatment to follow.

III. SPECIAL CASES AND THE MODIFIED BELAVIN–POLYAKOV EQUATION (MBPE)

Case (i): Suppose for all u , the space–curve evolution is such that

h50; K ,gÞ0.

In this case, Eq. ~2.8! yields

tu5~g/K !ts . ~3.1!

We now observe that if the scalar function g/K is separable, namely,

g/K5G~u !/F~s ! ~3.2!

where F and G are arbitrary integrable functions, then Eq. ~3.1! becomes a linear equation for t:

tu8
5 ts8 , ~3.3!

where the functions s8(s) and u8(u) are defined by s85* sF(s)ds and u85*uG(u)du . It is
evident that, in this case, the components of t can be any arbitrary functions of the variable z
5s81u8. Differently interpreted, any initial form of t„s8(s),u8(u50)… on the curve with the
parametrization s8 moves with ~transformed! time along the curve without changing its shape with
a dimensionless velocity equal to 21. Now, since t is a unit vector, it can be written in spherical
polar coordinates as

t5~sin u cos f , sin u sin f , cos u !, ~3.4!

where u and f are the polar and azimuthal angles. For illustration, let us examine the nontrivial
case F(s)5sx and G(u)5uy, say, where x ,y are odd integers .1. Suppose further that at u
50, t had the ~arbitrarily chosen! form

cos u 5 exp~2s8
2/2s2!, f5cos s8,

where s is a constant determining the width of the Gaussian. Here, the curve is a straight line at
s→6`(u5p/2), and as one approaches s50 the tangent vector tends asymptotically to the
upward direction (u→0). The curve is also turning periodically in s8, which means that in the real
space coordinates the pitch decreases as a power, x11, of the distance from s50. At any later
time the angles will develop according to

cos f 5 exp$2@sx11/~x11 !1uy11/~y11 !#2/2s2%,

f 5 cos@sx11/~x11 !1uy11/~y11 !# .
~3.5!

Thus, the initial maximum in cos u moves along the curve at a velocity that is position-dependent
(;s12x/y). In addition to this longitudinal sliding, the tangent continuously turns along the curve
in the perpendicular plane, viz., at any given location along the curve the tangent rotates as a
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function of time with the rotation frequency increasing as a power, y11, of time. This exotic
solution is but one example of a family of solutions that can be realized in this case.

Case (ii): Now suppose that for all u the curve evolution is such that

g50; K ,hÞ0.

Equations ~2.9! become

ts5~1/f !~tu3t!, tu5 f ~t3ts!, ~3.6!

where f 5(1/b)5(h/K). We call equations of the forms in ~3.6! the modified Belavin–Polyakov
equation ~MBPE!, owing to the resemblance to the known Belavin–Polyakov equation ~BPE!, as
will become clear shortly. We have not succeeded in solving ~3.6! for any general form of the
scalar function f . Special cases, however, can be solved explicitly, as we proceed to demonstrate.
Assuming, for example, that f is a separable function of u and s , say G(u)/F(s), Eq. ~3.6! takes
on the form of the usual BPE,8

tu8
5t3ts8 , ~3.7!

in terms of transformed variables u85*uG(u)du and s85* sF(s)ds . This equation first appeared
in the context of the nonlinear sigma model8 and subsequently in magnetic systems for the case
h5K , s85s , and u85u . It is known to support exact instanton8 solutions and twist9 solutions.
More recently, it has also been found to support a hierarchy of multitwist10 solutions.

For illustration, let us analyze two particular solutions of Eq. ~3.7! for an open-ended curve:
A single instanton and the single twist. The single instanton8,9 of typical size l centered at
(s08 , u08) has the form

cos u 5 @~s82s08!2
1~u82u08!2

2l2#/@~s82s08!2
1~u82u08!2

1l2# ,

f 5 arctan~u82u08!/~s82s08!.
~3.8!

A single twist9 of width 1/k and velocity v/k is given by

cos u 5 tanh~ks82vu8!, f 5 ~vs81ku8!. ~3.9!

Equations ~3.8! and ~3.9! give t(s ,u) for the evolving instanton and twist curves, respectively.
Since t5]r/]s , the curve profile at any instant of time u is obtained by integrating t with respect
to s . The results of these integrations are given in Figs. 1 and 2.

It is instructive to derive explicitly the curvatures and torsions of the instanton (I) and the
twist (T) curves from Eqs. ~2.3!, ~3.8!, and ~3.9!. A short calculation yields

K I52l/@~s82s08!2
1~u82u08!2

1l2# ,

t I52~u82u08!/@~s82s08!2
1~u82u08!2

1l2# ,
~3.10!

and

KT5Ak2
1v2 sech~ks82vu8!, tT5v tanh~ks82vu8!. ~3.11!

For the case (h/K)5C5constant, we recover the usual BPE, once again with a rescaled time,
u→u85Cu . The dynamics of the curve are distinctly different for the instanton and the twist. The
qualitative behavior of the curve for the two cases is obtained from Eqs. ~3.10! and ~3.11! as
follows.
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For the instanton curve both the curvature and the torsion vanish as u tends to 6` , and the
curve is a straight line. At some intermediate time, the torsion is negative everywhere along the
curve, increases as time goes on, vanishes at u5Cu0 , and turns positive thereafter. The curvature
is always finite and reaches its maximum everywhere along the curve at Cu0 . In other words, an
initially nonplanar curve with a given curvature becomes planar with a high curvature that goes as
1/@(s2s0)2

1l2# at Cu0 and then turns in the opposite nonplanar direction while its curvature
decreases as the inverse square of the time. The single-twist solution describes a kink that moves
along the curve with velocity v/k . As u increases, the torsion changes from 2v to v. The
curvature vanishes exponentially fast at the end of the curve, while it reaches its maximal value
Ak2

1v2 at s5vk/u . This qualitative description is borne out quantitatively in Figs. 1 and 2.
More general forms of F and G strongly modify the evolution of the curve. For example,

consider an exotic case where F(s)5A sin s (A.0) and G(u)51, leading to s85A cos s and
u85u . The one-instanton solution reads as

K I52l/@A2~cos s2cos s0!2
1~u2u0!2

1l2# ,

t I52~u2u0!/@A2~cos s2cos s0!2
1~u2u0!2

1l2# .
~3.12!

FIG. 1. The evolution of the one-instanton curve described by Eq. ~3.8!. The parameters are s0850.49, u0850.1, and l

51.

FIG. 2. The evolution of the one-twist curve described by Eq. ~3.9!. The parameters are k53 and v52.
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At any given time the curvature and torsion oscillate with the position along the curve, the
amplitude diminishing with time. The sign of t I;(u2u0) persists throughout the curve, as be-
fore. Also as before, the curve approaches a straight line as u→6` .

The single-twist solution for an open-ended curve becomes, in this instance,

KT5Ak2
1v2 sech~Ak cos s2vu !,

tT5v tanh~Ak cos s2vu !.
~3.13!

For early times u,2u052Ak/v , there is no twist along the curve since the argument of the
hyperbolic function has no zero. As time exceeds 2u0 , a twist suddenly appears and is repeated
periodically along the curve. The location of the twist within one period changes with time until
at u5u0 the twist disappears as suddenly as it appeared. Thus, this solution has a particle-like
character, but in the time domain.

It must be borne in mind that the form of G/F depends on the physics that governs the
dynamics of the curve. In other words, one still needs a physical argument to supply the equation
of motion of the scalar function f .

IV. TRANSFORMATION OF GENERAL CURVE EVOLUTION TO THE MBPE

Having covered the above special cases, a natural question that arises is whether the general
evolution can be reduced to the MBPE. We now proceed to show that this is indeed so, and that
the evolution of any arbitrary curve can be described by this equation. We believe that this is a
significant result, in that it reduces the evolution equation of the tangent vector to a relatively
compact form, many of whose solutions are known exactly.

We start by seeking a particular transformation from the variables s and u , to a new coordi-
nate system, j(s ,u) and h(s ,u):

ts5tjjs1thhs ; tu5tjju1thhu . ~4.1!

Substituting ~4.1! into ~2.9! and simplifying, we get

jtj5@jshs1~ajs2bju!~ahs2bhu!#~tj3t!1@hs
2
1~ahs2bhu!2#~th3t! ~4.2!

and

jth5@js
2
1~ajs2bju!2#~t3tj!1@jshs1~ajs2bju!~ahs2bhu!#~t3th!, ~4.3!

where

j[jshu2juhs5
]~j ,h !

]~s ,u !

is the Jacobian of the transformation, which, for legitimacy, should not vanish. We now require
that the transformation satisfies the condition

jshs1G~j !G~h !50, ~4.4!

where G(m)5(ams2bmu). Implementing this condition and using a little algebra, Eqs. ~4.2! and
~4.3! reduce to

th5 f 1~t3tj!, ~4.5!

where the scalar function f 1 is given by
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f 1[A js
2
1G2~j !

hs
2
1G2~h !

. ~4.6!

Note that with the above definition, the Jacobian is

j5@hsG~j !2jsG~h !# .

Thus, with the class of transformations (s ,u)→(j ,h) that satisfy condition ~4.4!, the general
curve evolution ~2.8! is indeed reduced to the MBPE, Eq. ~4.5!. As in the old coordinate system,
th and tj are also orthogonal to t in the new coordinate system. This can be seen by writing
t–ts5t–tu50 and expanding in terms of j and h. Alternatively, this follows from the fact that t is
a unit vector in any coordinate system.

As mentioned earlier, in spite of the attractive compact form of Eq. ~4.5! we are unable at
present to solve this equation for an arbitrary form of f 1 . However, if f 1 is separable, f 1

5G1(h)/F1(j), with F1 and G1 some arbitrary integrable functions, then we can recast the
evolution equation in the BPE form exactly as in case ~ii! discussed above, by defining the
following variables:

j8~s ,u !5E j

F1~j !dj , h8~s ,u !5Eh

G1~h !dh . ~4.7!

The resulting equation in the new variables has the BPE form

th8
5t3tj8

,

whose solutions have been discussed previously ~see Sec. III!. When translated to the original
coordinates, these solutions can be written in terms of a new variable10 c5

1
2 ln@(12cos u)/(1

1cos u)# as

cos u5tanhc„j8~s ,u !,h8~s ,u !…,

f5f„j8~s ,u !,h8~s ,u !….
~4.8!

c and f can be shown10 to satisfy Cauchy–Riemann relations in the j8h8 plane, so that they are
harmonic functions of j8 and h8: c is the harmonic potential, while f is the conjugate stream-
function. Unlike in usual two-dimensional Laplacian problems, they can diverge anywhere ~in
particular at the boundaries! in the present context, without losing physical relevance. The reason
is that the physical variable cos u 5 tanh c continues to be finite, remaining in the allowed range
@21,1# , even if c→6` . Thus solutions comprising polynomials of arbitrary degree are
allowed10 for open-ended curves. Similarly, the solutions for the angle f can also diverge and yet
remain physical, as it is only f mod 2p that is relevant to the curve.

For a closed loop, the boundary conditions are periodic and the solutions must consist of
periodic, harmonic functions in the variable s . The u variable need not be periodic, and if j8

increases monotonically with u , the generic solutions for c and f are combinations of oscillating
harmonic modes with hyperbolic functions, e.g., (sin ks8 cosh ku8). If, however, u8 is a periodic
function of u , we have an interesting situation where the terms are periodic in both s and u ,
corresponding to toroidal solutions.

V. APPLICATIONS

In this section, we discuss two physical applications of the curve evolution formalism devel-
oped above.
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A. Local kinematics of an evolving space curve and its physical realizations

Interfaces, polymer chains, etc. are physical applications of space curves whose equations of
motion can be either local or nonlocal. In many cases these equations take the form of a first-order
ODE for the local velocity of the curve, namely,

ru5v~x ,y ,z !. ~5.1!

For instance, this can correspond to viscosity-dominated dynamics. We can write the right-hand
side of this equation explicitly in terms of the local triad system ~t, n, b!:

ru5Un1Vb1Wt. ~5.2!

To relate the velocities U , V , W to the curvatures discussed above, we recall that t5rs and use the
same compatibility conditions that led to Eqs. ~2.4!. These yield the following three relations:

05Ws2KU , g5Us2Vt1WK , h5Vs1Ut . ~5.3!

We recall that only two of the ‘‘curvatures’’ K , t, g , and h are independent @the rest are related
through Eqs. ~2.4!#, and therefore these three relations give, in principle, the velocities U , V , W ,
say, in terms of the curvature K and torsion t, and vice versa. Eliminating any two of the velocities
in favor of the third yields a linear third-order ODE in s . For example, for case ~ii! of Sec. III, with
g50 and h5K , we find after a short calculation that the velocities V and W satisfy, respectively,

@$@~Vs2K !/t#s1tV%/K#s1~Vs2K !~K/t !50,

$@~Ws /K !s1WK#/t%s1~t/K !Ws2K50.

~5.4!

Although the above ODEs have complicated forms, it is clear that knowing the expressions for K
and t allows one to solve for V , W , and U5Ws /K , either analytically or numerically. We thus
have the state of the curve at any time u . This establishes the connection between the kinematics
of the physical curve, which can be observed and measured in the laboratory, and the quantities
defined in the preceding analysis. This connection should prove useful in several applications, for
instance, ~a! when one has a physical model for the local motion motion of the curve ~which must
be recast in the form of moving curve equations to find the global dynamics!, or ~b! when one
might wish to obtain curves of particular shapes as a function of time, for example, to engineer a
specific type of linking of a biological molecular chain or a polymer.

As an example of the above analysis, consider again the conditions of case ~ii! above, g50
and h5K . For clarity, let us focus on the single twist solution @Eq. ~3.11!# with k50 and v
Þ0:

KT5v sech vu , tT5v tanh vu . ~5.5!

The curvature and the torsion are independent of s and take on a particular value for a given u . At
u52` , KT50 and the curve profile is a straight line along the z axis. For finite u,0, we have
KT(.0) and tT(,0) constant along the curve for each fixed u , giving a helical curve. This
profile gets flattened to a circle as u→0 ~KT5v , tT50!. It then unwinds in the opposite direction
for increasing u.0, with KT.0, tT.0, and finally points along the 2z axis for u→` . Thus, the
special case k50 simulates the unwinding and straightening of a curve ~a polymer, say! that was
initially coiled up in a circle, at u50. The ODE satisfied by U in this case is simple to write down
from Eqs. ~5.3!, since ts5Ks50 and (K2

1t2)5v2. It is

Uss1v2U5K~u !t~u !, ~5.6!
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which, with the given boundary conditions, can then be integrated to yield U(s ,u) as a function of
v, K , and t. We find

U~s ,u !5~U02V0 /v2!cos~vs !1~V0 /v2!sin~vs !1@K~u !t~u !/v2# , ~5.7!

where U05U(s50, u) and V05Us(s50, u) are the boundary conditions at the instant u . The
explicit local kinematics of the unwinding and straightening of a helical polymer chain would be
useful in several biological applications.

B. The inhomogeneous antiferromagnetic chain

The spin evolution equation for the homogeneous case9 has been derived in earlier work in
another context. Here, we wish to concentrate on the new insight that the present analysis pro-
vides, for the inhomogeneous case.

Consider the classical inhomogeneous antiferromagnetic chain described by the Hamiltonian

H52(
i

J iSi–Si11 , ~5.8!

where Si5(S i
x ,S i

y ,S i
z) represents the classical spin vector of constant magnitude S at the site i and

J i is the site-dependent exchange interaction. The equation of motion for Si is found by using the
Poisson bracket relation dS l

d/dt5$S l
d ,H%5( ieabg(]S l

d/]S i
a)(]H/]S i

b)S i
g . Since J i, 0 for all

i , the nearest neighbor spin vectors will tend to align in antiparallel directions for low energies.
Hence, it is convenient to study the problem by writing down the evolution of the spin vector S2i

at an even site and S2i21 at an odd site as follows:

dS2i /dt5S2i3~J2iS2i111J2i21S2i21!,

dS2i21 /dt5S2i213~J2i21S2i1J2i22S2i22!.
~5.9!

In the continuum approximation, S2i→Se(x), S2i21→So(x2a); J2i2n→J(x2na), n50, 1, 2,
where a is the nearest neighbor separation. Note that the Taylor expansion parameter is 2a for the
sublattice spin vectors ~because of nearest neighbor antiparallelism! and a for the interaction J ,
which is assumed to vary smoothly along the chain to allow for the continuum approximation.
Thus, using

S2i11→So~x2a !12a~]So /]x !, S2i22→Se~x !22a~]Se /]x !

and

J2i2n→J~x !2na~]J/]x !,

in Eqs. ~5.9!, we get

Se ,t5Se3@J~x !~S012aSo ,x!1~J~x !2aJx!So# ,

So ,t5So3@~J~x !22aJx!Se1~J~x !22aJx!~Se22aSe ,x!# ,
~5.10!

where the subscripts x and t stand for partial derivatives. When J(x)5J5const, these reduce to
the equations for the homogeneous antiferromagnetic chain.9 For the inhomogeneous case, we
define two vectors P and Q as follows:
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@Se~x !2So~x2a !#52SP,

@Se~x !1So~x2a !#52SQ.
~5.11!

Combining Eqs. ~5.10! and using the definitions ~5.11!, a short calculation yields

Qt52J~x !Sa~P3Q!x22aSJx~P3Q!,

Pt54S~J~x !2aJx!~P3Q!12J~x !Sa@~Q3Qx!2~P3Px!# .
~5.12!

For the antiferromagnetic chain, it is clear that for low energies, uQu is much smaller than uPu.
Furthermore, note that Q50 is a possible exact solution for Eq. ~5.12!. In this case, Eq. ~5.12!
simplifies considerably and does not contain derivatives of J(x) anymore. This solution represents
dimer-like locked spin pairs along the chain, with P5Se /S becoming a unit vector in this limit.
Rescaling variables x/2a→s , St→u , and P→t, the second of Eqs. ~5.12! becomes

tu5J~s !~t3ts!. ~5.13!

This equation has the form of the MBPE @Eq. ~3.6!#. Defining a new variable
s85* sds/J(s) and u85u , this takes on the simpler BPE form @Eq. ~3.7!#. The solutions for the
polar angle u and the azimuthal angle f of t are given in Eqs. ~3.8! for the instanton class, and in
Eqs. ~3.9! for the twist class. Thus, we see that the above formalism and solutions apply to the
inhomogeneous antiferromagnetic spin chain, the requirement being that 1/J(s) is an integrable
function.

VI. CONCLUDING REMARKS

Moving space curves can be represented by two sets of Frenet–Serret equations that describe
the spatial (s) and temporal (u) evolution of the vector triad ~t,n,b!, by specifying the curvatures
K , g , and h and the torsions t and t0 . All these quantities are, in general, functions of s and u .
If compatibility conditions are imposed on the vectors, then coupled nonlinear partial differential
equations for the curvatures and the torsions are obtained. For certain special choices of curve
evolution, it is possible to obtain3 certain well-known completely integrable equations with soliton
solutions. While such a result implies that the underlying evolution of t is also completely inte-
grable, finding its explicit solution is a nontrivial task, in practice. In this paper we have studied
the problem of moving curves from a different angle and demonstrated that for a fairly large class,
the evolution of t can be reduced to a solvable form, enabling us to write down its solution
explicitly.

We have used the following strategy: We start by casting the general evolution of t in the
form Ktu5@gts2h(ts3t)# @Eq. ~2.8!#. Using this, first we show that if h50 and (g/K) is a
separable function of s and u , t satisfies a linear solvable equation with unidirectional traveling
wave solutions. Next, we show that if g50 and (h/K) is a separable function, t satisfies the
well-known BPE equation, which is a nonlinear exactly solvable equation. In both these cases, the
corresponding equations are in terms of transformed variables, which are functions of s and u . It
is interesting that we are able to generalize this latter result to the case when both g and h are
nonvanishing, to obtain once again a BPE in terms of appropriate transformed variables. Our
results demonstrate how a large class of curve evolutions with appropriate curvatures and torsions
can be effectively mapped to the BPE. This equation supports exact instanton and twist solutions.
If Figs. 1 and 2, we have displayed the curve evolutions corresponding to the single instanton and
the single twist. Multi-instanton solutions are well known. We have recently found multi-twist10

solutions for the BPE. These and the associated curve evolutions will be reported elsewhere.
Application to the kinematics of curve motion shows interesting results for the time evolution of
the local velocity components on the curve. As a second application, we find that the dynamics of
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the inhomogeneous antiferromagnetic chain can be mapped to a BPE curve evolution in terms of
a transformed spatial variable, which can be expressed in terms of the interaction between the
spins on the chain.

ACKNOWLEDGMENT

We thank the Theory Division and the Center for Nonlinear Studies at Los Alamos National
Laboratory for its hospitality, which initiated this collaboration.

1 H. Hasimoto, J. Fluid Mech. 51, 477 ~1972!.
2 M. Lakshmanan, Th. W. Ruijgrok, and C. J. Thomson, Physica 84A, 577 ~1976!.
3 G. L. Lamb, J. Math. Phys. 18, 1654 ~1977!.
4 See, for instance, D. J. Struik, Lectures on Classical Differential Geometry ~Addison–Wesley, Reading, MA, 1961!.
5 See, for instance, M. J. Ablowitz and H. Segur, Solitons and the Inverse Scattering Transform ~SIAM, Philadelphia, PA,
1981!.

6 A. Sym, Lett. Nuovo Cimento 22, 420 ~1978!; J. Cieslinski, P. K. H. Gragert, and A. Sym, Phys. Rev. Lett. 57, 1507
~1986!.

7 R. E. Goldstein and D. M. Petrich, Phys. Rev. Lett. 67, 3203 ~1991!; K. Nakayama, H. Segur, and M. Wadati, ibid. 69,
260 ~1992!; A. Doliwa and P. M. Santini, Phys. Lett. A 185, 373 ~1994!.

8 A. Belavin and A. M. Polyakov, Pis’ma Zh. Eksp. Teor. Fiz. 22, 503 ~1975! @JETP Lett. 22, 245 ~1975!#.
9 R. Balakrishnan, A. R. Bishop, and R. Dandoloff, Phys. Rev. Lett. 64, 2107 ~1990!; Phys. Rev. B 47, 3108 ~1993!.

10 R. Blumenfeld and R. Balakrishnan ~unpublished!.

5888 R. Balakrishnan and R. Blumenfeld: Curve evolution and Belavin–Polyakov equation

J. Math. Phys., Vol. 38, No. 11, November 1997

Downloaded 02 May 2001 to 131.111.75.124. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp


