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We present an exact expression for the rate of screening with time of an arbitrary point on a
growing diffusion-limited aggregate, and use it to study the multifractal singularities a that corre-
spond to strongly screened sites. We find that the time evolution of these singularities is con-
trolled by the field at the lips (the outer corners) of the fjord. We show quantitatively that if the
time evolution of the strongest singularity amax is self-consistent with the growth process, the key
issue is the process by which long fjords are generated. We analyze this process and find an
asymptotic linear slope for the decreasing part of f(a). This form agrees with recent measure-
ments [Barabasi and Vicsek, J. Phys. A 23, L729 (1990)] and excludes an infinite value of amax.

The growth of many structures in nature is limited by
diffusive processes. Examples include electrodeposition,
bacterial growth, colloidal aggregation, etc. It is a decade
since the model of diffusion-limited aggregation (DLA)
has been introduced,' but in spite of the intensive study
that this model attracted, only limited analytical progress
has been made towards a complete explanation of the
resultant pattern. In DLA the harmonic measure, which is
the distribution of flux 9, at an equipotential surface
® =0, is of particular interest as it governs the growth of
the structure. The first incisive discussion of the distribu-
tion of ® was given in two complementing works? for
two-dimensional (2D) DLA, using a formalism anticipat-
ed by Mandelbrot.® It was suggested that a number
n(p)~(R/a)’@ of regions of size a have “measure”
p~(R/a) ™, where the measure is the total integrated
flux of particles into the region. This description enables
one to characterize the moments of this distribution,
M,=3,n(p)p?, by a single function f(a), termed the
multifractal function. This multifractal behavior has been
associated with the self-similar pattern of the equipoten-
tial boundary of the aggregate.*

Slow convergence to accurate scaling behavior has long
fostered doubts about precise self-similarity of DLA clus-
ters in 2D, and more recently the applicability of the f(a)
description has been called into question.® ~® Such a situ-
ation occurs in the context of the current distribution in
percolative random resistor networks, where it was found
that the multifractal description is inadequate in the nega-
tive moments (g <0) regime.'® As pointed out in Ref. 6,
while inspecting actual clusters it is relatively easy to en-
visage structures for which the distribution of harmonic
measure is, for small values, not usefully described by
f(a).

In this paper we first show that the change in flux at the
bottom of a fjord is governed by the growth at its “lips”
(the outer corners), extending analytic work of Halsey '
and Ball and Blunt.'?> We discuss sustainability of growth
in the sense that two different definitions of a should agree
asymptotically: a, is the rate of screening as a function of
distance from the point in question at fixed time, and «, is
the rate of increase in screening of that point as the radius
of the cluster grows with time. We also study the relation
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of this question to the competition between lips as the
fjords grow and derive the behavior of the asymptotically
decreasing part of f(a), thus clarifying this much debated
issue of the most screened sites. We check our analytical
predictions against recently published numerical results '
and find excellent agreement.

All the discussions in the literature concerning the issue
of exponential screening, except Ref. 8, have thus far
disconnected the distribution of the measure from the ac-
tual growth process of the structure. This separation is
possible for the current distribution in random resistor
networks, where the geometry of the network that deter-
mines n(p) is independent of the magnitude of the
currents through the bonds, which determine p.'° In
DLA such a separation cannot be justified because the
growth process that determines n(p) is governed exactly
by this very same distribution of p. Hence a consistent
analysis should incorporate some closure condition that
takes this fact into account. Here we introduce such a re-
quirement and find its implications.

It is convenient to analyze the harmonic measure within
the framework of electrostatics; we seek to calculate the
change in E, at a point s’ on the growing perimeter of the
aggregate due to an infinitesimal advance 8x (s) at anoth-
er perimeter point s. The cluster is assumed at potential
® =V, while the boundary at a large radius R is kept
at ®=0. To shift the ® =V, equipotential outwards
from x(s) to x+6x(s) requires an increment of &®
=5x(s)E (s) to the potential just outside the growth. Al-
ternatively, this can be achieved by placing a density of di-
poles 6x(s)E(s) at the surface. Hence, if the field at s’
due to a unit dipole (just outside the original surface) at s
is denoted H(s',s) we have!!

SE(s") =fH(s',s)6x(s)E(s)ds, s'#s 1)

for points s' where 8x(s) =0. For points at which §x(s)
#(0 there are some subtleties which need to be ex-
plained.'* but which do not change the global result ob-
tained here. Elementary considerations show that the
quantity H(s',s)/[E(s)E(s')] is conformally invariant.
Therefore applying a simple conformal mapping leads to
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the exact result !’

Qr/QNEG)E(s')
4sin%(6/2)

H(s' s)=— , §'#Es

@)
0=PE()ds, 0=Cn/Q) [ E(sm)dsn,

where Q is the total charge on the growth and 0 is the
charge in units of angle between points s’ and s.

If we now use the (constitutive) growth rule 8x(s)
=E (s)ét [it is trivial to extend the present analysis to the
dielectric breakdown model where 8x (s) =|E (s)|"6t], we
can write down the temporal equation for the evolution of
E(s') as

BEL) — G H (s, E () ds. 3)
We now proceed to apply this result by first considering
the change in the overall charge

id?—=§ds[E(s)]2§ds'H(s',s). (4)

Employing the symmetry of H under an interchange of s
and s, the inner integral has a very simple interpretation:
It is the change in E(s) due to a unit dipole density
(which is equivalent to a uniform increase in the poten-
tial) over the entire growth surface. Hence the inner
integral equals E(s)/Vo exactly, and dQ/dt=(1/
Vo) JE (s)3ds, as first noted by Halsey. !

Next we look at dE/9t for a region s’ where E(s)— 0
as s— s' sufficiently strong so that the region from s to s’
does not dominate the integral in (3) (see below). Substi-
tuting (2) into (3) yields an expression for the rate of
change of E(s'), which exactifies the approximation of
Ball and Blunt.'? If we now represent the overall size of
the cluster in terms of a radius R(¢) of a circle which has
the same capacitance as the cluster, with respect to the
outer earth [this definition of R(z) should agree with the
radius of gyration up to a constant of order onel, i.e.,

$ds E(5)nlr ()/R(11 =0,

then we have Vo=(Q/27)In[Rcan/R(2)] and we can
eliminate Q, ¥y, and time from the above equations to ob-
tain

sinlEGH]  PdsIE)I/l4sin2(6/2)]
Q=E— = .
Bln[R(t)] §dS[E(S)]3

This is the primary bare result of this paper— an explicit
expression for the rate of screening with time of an arbi-
trary (negligibly growing) point. Its numerator could
only be dominated by the field near s’ when E(s) in-
creases outwards slower than |s —s'|. By contrast, there-
fore, we must conclude that for exponential screening
[where E(s) should increase faster than any power of
|s —s'|1, the value of a, at the bottom must be dominated
by the action at the lips of the fjord.

We can now relate a; to the geometry of the fjord. The
denominator on the right-hand side of (5) is simply the

(5)
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third moment which behaves as

m3(R) =Pds[E()1P~R ™", 6)

where 73 is independent of the size and we choose the nor-
malization Q=fE(s)ds=2r so that E =|96/ds|. The
numerator N we handle as follows: It is plausible to as-
sume that locally the most screened point is at the bottom
of a fjord, of width w(r) where r is a distance variable
that increases from the site outwards. Then W can be
broken into successive boxes of size w X w giving

3
N=3 Lo Gl guad ™

boxes Bbox

where the integral amounts to the third moment of the
growth probability, normalized to one within the box,
namely, m3(w). Elementary considerations of screening
down channels give'® d6/dr = 6/w so that guox = Opox, and
we have

W= [ AW Imson) = [ doImaw ().
@)

We expect the (positive) local moment m 3 to behave as
mi~w , and take a general case where on the average
w(r)~r%. If 6(r) increases faster than a power of r, the
integral is dominated by large r as argued above, and the
field at the bottom of the fjord is irrelevant. The same ap-
plies to 8(r) ~r® for a> zr3+z —1, so in all interesting
cases the numerator is dominated by the lips of the fjord
(ie., 6, and w;) and

m3, 6

a; = = OL (R/WL) " . (9)

M3 cluster
Using the above equation, we now examine whether
there is a bound on the strength of screening which can be
consistently maintained under growth. We write the
charge on the lip as 6, = n(w./R) " to obtain
10

T3 —a
a;=Ca*> ™",

where C is a constant and we used a,=R/w;. If a
> 73— 1, this puts an upper bound on the sustajnable
screening through the relation a, =a, =c/Ha=m s
ing established results, 73=D and amin=D—1,'"'>"7 we
see that an anomalously large value of a can be sustained
only in the extreme case where a long narrow fjord opens
directly onto one of the strongest singularities (@min) of
the growth. Another way to interpret these results is to
regard the rate of increase in screening as a function of
growth of the fjord rather than the growth of the entire
cluster. 6, can be written as (8.L/8.R)(w./R)"™!
whereupon

o= — dlnE =L61R
tLT 0 8InL(t)  RO,L

where 73 =D and the above results have been used. So we
have a consistent picture where a; 1 =a;.

Thus the next relevant question, which we address
below, concerns the probability P that such a process
occurs. The above discussion establishes that the dom-

an

a,=L/wg,
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inating case corresponds to two nearby lips growing at the
same rate to generate a long fjord. Such a process is in-
herently unstable because falling behind by either lip im-
pairs its growth further. It follows that the natural candi-
dates to promote large values of a evolve by maintaining a
close race between the lips for comparatively long times,
yielding long and narrow fjords.

We proceed to estimate P by considering a fjord of
length L and lip separation w; <L, whose lips advance a
distance w; outwards, L— L'=L +w;. The field inside is
reduced by a factor {=(1+1/y)™, where y=L/w, (for
1 <y <oo, ¢is between 27 and e™). The only mechanism
that can counterfeit the instability is the structural fluc-
tuations. Specifically, if a mismatch Ar (in the growth
direction) appears between the lips of a fjord, and Ar is
smaller than the noise amplitude, this mismatch may be
spontaneously closed. The amplification of the mismatch
under diffusion-controlled growth would lead to Ar(L')/
Ar(L)=y>1. We expect the spontaneous fluctuation to
be of order Arims= wrve/D, where € is the asymptotic
relative variance of mass added discussed in Ref. 18. An
unstable runaway occurs only if the amplification by y
takes Ar outside the noise range, while when Ar
<e/Dw/y the fjord will keep growing as such. It fol-
lows that the probability that the two lips keep abreast at
L' is the probability of retaining the balance until L multi-
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plied by 1/, or §(InP) = —Iny. If this process dominates
occurrence of smallest growth probabilities, we can con-
clude that P~L/~4.  The field inside obeys
Einside/ Etip~L ~° "%, where 4 and B are constants. It fol-
lows that

Jln(Einside/Eup) —6l(a+B)InLl In¢ *
Integrating over this equation one finds
f(a)-—%:%a+K+0(1/lnL), a3)

where K is a constant. This implies that if old fjords dom-
inate the large-a regime, the slope of the f(a) curve ap-
proaches a limiting finite value. This bounds the value
of f(a) for large enough a, which excludes exponential
screening (i.e., exponentially small growth probabilities
leading to infinitely large values of @max) even under noisy
growth. However, it should be stressed that (i) the f(a)
curve may achieve a steeper slope for intermediate values
of @, and (ii) that finite-size effects of order 1/InL [as ap-
pears in (13)] may be large for the present sizes of simu-
lated aggregates. Unfortunately the analysis presented
here cannot yield a value for ap,y itself.

Returning to the survival probability of old fjords P, we
note that when the fjords grow by w;, their y value in-
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FIG. 1. The logarithm of the distribution dN/dy of the aspect ratio y (length divided by outer width) for fjords of DLA clusters
from the data of Ref. 13. The behavior is linear, as predicted in the text, with slope 0.67 = 0.05. The corresponding asymptotic linear
decrease of f(a) predicted is compared in the inset with f(a) data (Ref. 19).
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creases by unit, 6y =1. Hence §InP/Sy = —Iny, which
yields P~exp(—Inyy) for large y. Thus we expect the
distribution of fjord aspect ratios F to behave as

dF
dy exp(—ylny)
for large y. Figure 1 shows the data in Ref. 13 (originally
published in the form dF/dx, where x =1/y) plotted on a
semilog scale, indicating good agreement with our form,
with a slope of Iny=0.67 £0.05. For the narrow fjords
that dominate this regime, we thus have to a good accura-
cy In¢=r and hence the asymptotic value of the slope of
the f(a) in DLA is predicted to be 0.21 £ 0.02. The inset
in Fig. 1 shows this slope compared to f(a) obtained from
simulations on clusters of 100000 sites,'® indicating rea-
sonably good agreement.

To conclude, we analyzed the behavior of the multifrac-
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tal function f(a) for large a. We found that by ignoring
structural fluctuations we could employ a self-consistency
argument that leads to an upper finite bound on @max. In-
cluding the effect of noise, we have found that we can
bound the slope of f(a) for large a, thus effectively
bounding again amax. The asymptotic slope has been es-
timated from numerical results in Ref. 13, to be of order
—0.2. We suggest that our results indicate that amax is
bounded by a finite value for asymptotic DLA. We should
mention that these results also lead to a second-order
phase transition at some value of a. where the slope
reaches its asymptotic value.
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