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Onset of scale-invariant pattern in growth processes: 
the cracking problem 
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We discuss a possible mechanism for the onset of scale-invariant pattern when a cracking struc- 
ture propagates in a continuous medium. We show that sufficiently close to the tip of an evolving 
arm the stress field is insensitive to the shear on the boundaries far away. We predict the number 
of major arms given the local relation between the growth rate and the stress field. We find oscilla- 
tory modes periodic in the logarithm of the distance from the tip of the pattern. We argue that these 
solutions lead to initiation of log-periodic corrugations which are unstable and hence develop into 
fully grown sidebranches with the same spacing pattern. This pattern is scale-invariant and hence 
this analysis provides a mechanism for the onset of self-similarity in these structures, a phenome- 
non observed in many simulated and real systems. The relation to the pattern formed by a diffusion 
controlled growth is discussed. 

I. Introduction 

The field of pattern formation has enjoyed a burst of activity in recent years from 

the point  of view of statistical physics. In particular, structures displaying scale-invar- 

iance on many length scales have been investigated intensively. Two particular ex- 

amples in two dimensions (2D)  are diffusion controlled growth and quasi-stable 

cracking formation. The former is governed by a harmonic field, while the latter by 

the biharmonic  equation. One can imagine a structure grown stochastically by a gen- 

eral field, where the growth is governed by some local relation between the rate of 

advance of the front and the magnitude of the field. So progress in any of these prob- 

lems may give insight into dealing with other growth processes. In spite of the large 

body of work done on such problems, there is little unders tanding why the as~,mptotic 

structures evolve into the (fractal) patterns observed in so many real and simulated 

stochastic growths. In other words, there is no consistent analysis that starts from first 

principles and leads to formation of self-similar patterns. 

Recently, in trying to unders tand some computer  simulations [ 1,2 ], we have ad- 

dressed this issue directly in the context of the propagation of a quasi-stable cracking 

pattern [ 3 ]. The problem of the mechanics and dynamics of propagating cracks is of 

theoretical significance, as well as enjoying a large variety of possible applications and 

technological uses. A crack init iated in a brittle material propagates fast due to local 
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breakdown at the running tip, while in ductile media such propagation may be very 

slow. It follows that the final pattern depends significantly on the ratio of the typical 

time of propagation (to be defined more precisely below) to the relation time of the 

stress field around the crack. The work described here focuses on the quasi-stable 
(adiabatic) regime when the crack grows slowly, allowing the elastic stress field to 

relax so that it can be considered at equilibrium at any time. The above computer 

simulations of this process usually assume an underlying lattice structure in which a 

crack is initiated, and whose rate of growth at its front, v, is a function of the local 

stress,f (0r). These simulations have shown that the resultant morphology in two di- 

mensions (2D) is fractal with a fractal dimension that depends much more on the 

model assumed rather than on the boundary conditions (BC). We focus on quasi- 

stable cracking in an isotropic continuous medium. This should provide insight into 

the mechanics of propagating cracks in general and to the understanding of the afore- 

mentioned simulations in particular. Our results are the following: (i) Modelling the 

envelope of the growing pattern by a wedge, we first identify the physical origin of the 

dominant two singularities at the tip of this wedge. The main singularity is of exten- 

sional character; provided there is anisotropy in the crack structure to couple it, this 

dominates even when the externally applied stress is shear. (ii) We use the main sin- 

gularity to estimate the number of major arms of the growth. (iii) We find that within 

a substantial range of wedge angles all higher order corrections to the stress field at 

the edges of the envelope oscillate with periodicity in log of the distance from the tip. 

These oscillations are argued to initiate corrugations on the envelope of the pattern 

with the same periodicity. (iv) We show that these corrugations are unstable and 

grow outwards to become fully grown sidebranches with spacings selected by the static 

solutions. This may provide a mechanism for the onset of scale-invariant pattern in 

these systems. We discuss the difference and the resemblance between the biharmonic 

and the harmonic cases. 

2. The stress field near the envelope of the pattern 

We consider a cracking pattern forming in a homogeneous and isotropic elastic 
medium. Contrary to other approaches [ 4 ], we start from an already fully developed 

pattern and analyse its further evolution. The cracking process generally forms a very 

complicated and ramified structure, whose interior carries very little stress. There- 
fore, to a good approximation, we can envisage the structure as enveloped by an im- 
aginary surface (line in 2D) and consider this envelope as an effective boundary for 
the stress field outside the structure. Following others (and ocular evidence in 2D), 
we approximate this envelope as a wedge of head angle 2fl= 2n-2c~ (see inset in fig. 
1 ). One can choose other shapes, but although highly idealised, this shape is believed 
to capture the essential features of crack patterns in many cases, as well as being con- 
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Fig. 1. The smallest m(cO solution for the odd (m_ in full line) and even (m+ in dashed line) version 
ofeq. (4). Note that m+ < m for all c~. Inset: the wedge-shaped envelope of the crack. 

venient for analytical calculations. It is convenient to represent the stress tensor in 

terms of  the Airy stress function (ASF) q~. The stress tensor is symmetric and is de- 

rived from q~ via axx=0yyq~, ayy=Ox~  and axy=-Oyxq~. Since the interior of  the 

cracking pattern carries very little stress, we hereafter neglect it altogether and use 

free boundary conditions on the edges of  the wedge envelope 0x.x, q~= Ox,y, q)= 0, where 
x '  and y '  are, respectively, the normal and tangent directions to the surface at any 

point along it. These can be rewritten in the form 

( x ' - V ) V ¢ =  0 ,  ( 1 ) 

leading to Vq~ being a constant vector along the edges. This constant corresponds to a 

rigid displacement of  the entire system, which is o f  no interest to us here and we 

choose V ~ =  0 along the surface. This gives q~ = constant along the surface, which is 

again of  no significance to us, and is therefore chosen here to vanish as well. The other 

boundaries of  the system are at y =  _+ ~ with the BC there being an arbitrary combi- 

nation o f  extension and shear. In an isotropic medium, q~ satisfies the biharmonic 

equation 

V4q)= 0 .  (2) 

Eqs. ( 1 ) and (2) determine uniquely the stress field in the exterior of  the pattern. 

Both these equations are independent of  the compressibility of  the material and hence 
of  its specific properties, thus demonstrating directly the universality of  the solutions 

to q~. This combined with the simplifications in the following calculations are the 
reasons for using the ASF rather than the more commonly  used stream function. 

The ASF can be separated into an even (q)e) and an odd (q~o) contribution, which 
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can be expanded near  the stress-free wedge envelope as 

' .... + ' ,  ( 3 )  4~o(r, 0 ) =  ~ {PmCOS[ ( m - - l  )O]+q,,, c o s [ ( m +  1 )0 ] , t  
m 

where r and 0 are, respectively,  the dis tance from the l ip of  the wedge and the azimu- 

thal angle (see inset in fig. 1 ). The corresponding equat ion for the odd contr ibut ion 

is s imilar  to (3)  with the "cos"  terms replaced by "s in" .  Inspecting (3)  it is impor tant  

to note that it admi ts  solut ions where m is complc~v, m = lz + i u .  The even (odd)  part 

of  q) corresponds to a pure extension (shear )  appl ied  on the boundar ies  at y =  ± ~ .  

The complete  solution consists of  a l inear combina t ion  of  both parts with the above 

BC. Applying the BC we can e l iminate  the coefficients p,,,/q,,, and obtain two equa- 

t ions for m in the form [2,5 ] 

s i n ( 2 m a )  _ + s i n ( 2 a ) = 0 ,  (4)  

where the + ( - ) sign corresponds to the even ( o d d )  contr ibut ion.  

Near the t ip of  the wedge, the smallest value of/L governs the behaviour.  Neverthe- 

less, higher order  terms, which act only as correct ions near the tip, are shown below 

to play a significant role in the evolut ion of  the growth. Hence we study the general 

solut ions in some detail .  Two straightforward solutions are tTl= 0 and 1, which cor- 

respond to a constant  added,  respectively,  to the d isp lacement  and to the stress fields. 

These trivial  solutions are of  no interest  to us here. We first f ind that the smallest 

solution for both 4~ e (m + ) and q5 o ( m _ )  are purely real for all ~. For 2o~ < 2c~* ~ 1.43n, 

777 increases from 1 to 2 as 2c~-~rc, indicat ing a vanishing contr ibut ion near the tip 

and suggesting that  the shear on the boundar ies  far away is irrelevant.  For  2o~> 2c~* 

the odd solution drops below 1 and tends to ~ when 2 ~ 2 n ,  thus diverging as r-~0. 

The smallest even solution to (4) ,  m+,  is smaller  than one all over the range 

< 2c~ < 2n~ and hence diverges at the t ip for any o~. We also find that  m+ < m for all 

c~ < n, indicat ing that  the even solution always dominates  near  the tip. In the conven- 

t ional  model  of  a line crack, corresponding to ~ = n, m + = m = 1 which obscures this 

impor tan t  observat ion.  It follows that sufficiently close to the t ip the field is governed 

by the extension tension at the boundar ies  far away, while the shear there only modi-  

fies the singularity slightly. This result can be interpreted as indicat ing that within the 

inter ior  of  the structure, the deta i led nature of  the BC far away is locally obscured due 

to the convoluted  pat tern and hence the universal  solution is insensit ive to these BC. 

Following this observat ion we can deduce that in sufficiently big systems the mor- 

phology o f  the growth depends  very weakly on the nature of  the external BC. In par- 

ticular, this means that the fractal d imension  found in recent compute r  s imulat ions  

[ 1,2 ] should not depend on those BC. Indeed,  the difference in the fractal d imens ion  

due to differing BC was found to be very small,  which supports  this conclusion and 

may imply that  this difference could be a t t r ibuted  to finite size effects. The lowest two 
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singularities thus describe a renormalisable scaling behaviour and their dependence 

on a is shown in fig. 1. 

Turning to higher order corrections, we find that when ~ 1.155n < 2a  < ~ 1.75n, m 

has an imaginary component  for all higher order terms. This gives rise to an oscilla- 

tory term r u exp(iu In r). For 2a  outside this range more real solutions to m appear 

in lowest order terms (see fig. 2 and its caption),  until when 2a-.n, 2n the roots m, 

tend to the set of  all real integers and half-integers and the oscillatory modes disappear 

altogether. Thus the oscillations are pronounced within the above range of  angles and 

when the edge is either too sharp, or too blunt, these modes are suppressed. 

3. Stability analysis and branching 

Due to the universal nature o f  the solutions for the stress field, the above discussion 

applies to any elastic cont inuum system. Nonuniversality sets in via the local relation 

between the growth rate of  the front v and the stress perpendicular to this front, f ( a x  ). 

Since one usually expects ~v/Oax > 0 then initiation of  new cracking along the enve- 

lope of  the crack is favoured at locations where the stress is locally peaked. This im- 

plies that the above oscillatory modes initiate cracking that follows the same period- 

icity in In r as the stress field. 

Next we need to establish that once initiated, the embrionic cracks survive to even- 

tually contribute to the global pattern. This we do by analysing the stability of  a cor- 
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Fig. 2. The number and values of the real solutions to the odd (even) version of eq. (4) can be found at 
any c~ by the intersections of a vertical line at the correct value of 2a/~ with the shown full (dashed) 
lines. In the range 1.155 < 2 ~ / ~ <  1.75 only the lowest two are real (disregarding the trivial solution 
m = 1 ), and all higher orders are complex. 
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rugation on the envelope of the cracking pattern and show that it propagates faster 
than the advance of its immediate neighbourhood. For simplicity we consider the 

stability of a stress-free flat surface, aligned along the x-axis with a tensile stress ap- 
plied to a boundary at y=oo.  This analysis is expected to hold for any reasonably 

smooth surface when corrugated perturbatively. The perturbed surface can be repre- 

sented by 

y ( x ) =  ~ Y~.exp(ikx), (5) 

with Yo=0 at time t=O, and the coefficients Ya<< 1. To first order in Y~, we find 

qS=aoy(X)(½y- ~ Ykexp(ikx-,kly)). (6) 

where ao is the stress perpendicular to the unperturbed surface. This leads to 

cr~ = 0,,.,.4~=ao +2ao y~ Ikl Y~exp(ikx). (7) 
k 

Considering now the local relation v(r) = f ( a L  ( r ) ) ,  expanding in Ya and keeping 
only the lowest term, we find 

v= a,y(x)=.f(~ro) +2ao a,~f(o-o) ~ Ikl Ya exp( ikx) .  (8) 
k 

Using (5) and (8) and equating term by term we get an equation for Ya. that can be 
solved to yield 

Yo( t )=f (~o)  t ,  ) ~ . o ( t ) =  Ya(0) e x p ( l / r ) ,  r =  1/[2lkl~o O j ( ~ o ) ]  • 
(9) 

As mentioned above, a~.f(~o) > 0 and hence Ya increases exponentially in time, mak- 

ing any/,--wave corrugation unstable. The sharper the corrugation, the larger k and 
the more unstable is the k-wave. The particular form used in the numerical simula- 

tions, f ( a )  ~ l al" [1,2], yields 1/r~2tllkla~. 
Since the value of r defines a lime scale relating to the crack's propagation, we can 

now exactify the condition of quasi-stability (also defining the range of applicability 
of our analysis) by requiring the stress field to equilibrate faster than r. From (9) we 
see that r decreases with Ikl indefinitely, so for the growth to remain quasi-stable 
another mechanism must exist (e.g., surface energy) that prohibits very sharp corru- 
gations. If the cutoff is ,t~= 2r~/k~, corresponding to r~, then the stress field relaxes 
faster than the propagation of the pattern when the sound velocity in the medium is 
larger than 2~/r~ ~ 4rrao Oof(ao). Evidently this condition is hardest to satisfy near 
the tips where the stress is largest. 

Now consider the effect of screening competition between neighbouring major arms 
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on the resultant pattern ~. We imagine a growth with 2N equivalent major branches 

and analyse the pattern's stability towards small modulation of one of them from 
length R to R + 8R cos(N0). Starting from the ASF for the unmodulated growth: 

~( r ,  0) = R  ~ [an + (r/R)2bn] (r/R) -~ cos(n0) +R[ao+bo(r/R) 2 ] ln(r/R).  
n : l  

(lO) 

Disregarding the logarithmic term, which cannot affect the angular modulation, the 
ASF for the modulated growth can be written as ~ '  (r, O) = q)(r, O) + 8q~(r, 0), where 

8q~(r, O) = 5R ~ [na, + ( n - 2 ) b , ( r / R )  2] ( r /R)-" -N COS[ (N+n)O] 
n 

satisfies the biharmonic equation and near the tips (r=R and cos(N0) = + 1 ) equals 
+_ 5R Oq~/Or, thus advancing or retarding the ASF solution by 8R radially. We now 

compare the behaviour of  the new ASF at a cutoff radius p << R from the tips of the 

modulated growth with the old ASF at a distance p from the unmodulated tips and we 
find (to first order in 8R/R) 

~ '  ( R +  8R cos(N0)+p,  0) 

( 5R Oln~(R+p,O))  
=~(R+p,O) l + ( N - l ) ~ c o s ( N O )  01np " (11) 

Using the stress singularity near the tip ~ ( R  +p, 0) u p  i +m+, the derivative on the rhs 

of ( 11 ) becomes m+ + 1. When the structure grows from R to R' =R+ 6R its rate of 

growth changes from v to v ' =  v+ 8v and it is easy to see that 5R' /R '= (6R/R)(  1 + 
5v /v-  8R/R). So the growth is unstable when 5v/v> 8R/R and vice versa. But self- 
similarity implies that at each length scale the relative growth 5R/R rate cannot change 
giving 6v/v = 5R/R (marginal stability ). For example, when v ~ I a l 7, 8R/R = q. Sub- 
stituting all this into (11) yields that 8R/R increases with growth when 

q ( N -  1 ) ( 1 + m+ ) > 1 and hence the highest sustainable modulation corresponds to 
the maximal stable number of  arms, giving 

N * = l  + l /[ t l ( l  +m+ ) ] . (12) 

Since ½ ~<m+ ~< 1 we can bound N* by 2+  1/q<<.2N*<~2+4/3~l. For q= 1 this puts 
2N* very close to 3. The quantity ~/N* should be interpreted as the smallest stable 
angle between the direction of growth of neighbouring major arms. 

4. D i scus s ion  and conclus ions  

Scale invar iance  (i .e. ,  invar iance  under  the t rans format ion  r-,r' =2r) a m o u n t s  to 

~ For the harmonic field parallel, see e.g. ref. [ 6 ]. 
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translational invariance in In r space (In r-~ In r' = In 2 + In r). So periodicity in In r is 
the fingerprint of scale-invariant structures. In the context of  aggregation and the for- 

mation of cracking patterns this corresponds to geometrically spaced sidebranches, 
which are usually observed in real systems. Hence, the above oscillatory solutions 
must bias the growth strongly towards such a pattern as follows: Following the local 

maxima in the stress field, initial cracks appear as corrugations along the envelope of 
the pattern with lr~ r periodicity which traces that of the stress field. Being extremely 
unstable, as we have shown, these corrugations develop into fully grown sidebranches, 

freezing the original spacing pattern. 
It is interesting to note that the periodic change of sign of the perpendicular stress 

along the edge, combined with relation (9), indicates alternating regions of relative 
stability (suppressed growth) and instability (enhanced growth ). This may provide 

a mechanism for suppressing growth locally, in addition to the (currently believed to 
be unique) termination of cracking by screening. It should be emphasised that al- 
though the oscillatory modes only modify the leading power-law behaviour in the 

static solutions to the stress field, their contribution to the dynamic evolution of the 
pattern may be considerable. This is because the dominant singularities cannot affect 
any periodicity in the field along the edges, while the oscillating modes can and con- 
sequently initiate local cracking, which are strongly amplified by the field. Thus it is 

possible that these very terms are actually more important in determining the result- 
ant pattern. 

Let us discuss the relation of the above analysis to diffusion limited aggregation 
(DLA). In DLA the growth is governed by the harmonic (rather than the bihar- 
monic) field, and so cannot accommodate static solutions that oscillate in In r. Never- 
theless, both processes result in a fractal pattern caused by continuous tip splitting. 
This implies that the origin of the fractal pattern of major sidebranches need not orig- 
inate exclusively from static solutions, and there can also exist another selection 
mechanism that influences the growth process. Such an independent mechanism would 
compete, in the case of the cracking problem, with the periodicity dictated by the 
static solutions. This competition need not be destructive, but rather such a mecha- 
nism can act only as a filter, resonating with a certain mode and selecting a particular 
value of v. The selection mechanism originates from the screening competition be- 
tween branches on the strength of the field (which determines the influx of particles 
in the case of DLA, and the growth rate in the cracking propagation) and can be 
described in terms of geometrical constraints on the final structure [ 6 ]. Such a mech- 
anism may in principle be independent of the field and hence apply (at least qualita- 
tively) to growth in a general field. Hence its study is an important step towards un- 
derstanding patterns formed by stochastic growth in general. It is plausible that the 
mode selected in the biharmonic case will correspond to one of the low order terms 
in expression (3), but it need not necessarily be the lowest, as a selection mechanism 
resonating with one of the higher order terms may amplify it to dominate the pattern. 
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In the  absence  o f  stat ic  so lu t ions  in D L A  osci l la t ing in In r, as above ,  the external  

se lect ion m e c h a n i s m  r ema ins  the  sole fac tor  gove rn ing  the  growth.  The re fo re  one  

should  s tudy this  m e c h a n i s m  in the con tex t  o f  D L A  [ 7 ] and  then  apply  the  insight  

ga ined  f r o m  it to the  c racking  p rob lem.  
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