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The results of Stroud and Hui (SH) on the conductivity of weakly nonlinear media are shown to
imply the scaling behavior of the critical current I., which marks the transition from linear to non-
linear behavior. Applying this idea to a specific system, we suggest a possible explanation of experi-
mental results reported previously. The scaling behavior of I, is also calculated for the case of a

perturbed strongly nonlinear system.

In a recent paper, Stroud and Hui' (SH) studied the
electrical properties of a weakly nonlinear composite
medium at the percolation threshold p,. Assuming a
small cubic correction to the local linear electric field, the
current density between two terminal plates, positioned a
large distance L apart, is

J=[o,(L)+a,(L)|Ey*1E,, (1)

where |Ey|L is the potential difference between the termi-
nals, o, and a, are, respectively, the effective linear con-
ductivity and the corresponding effective amplitude of
the nonlinear perturbation. For the case a,|E,|*><<o,,
SH find that

a,~L%o? (2)

where 802 stands for the rms conductivity fluctuations in
the unperturbed system. In our Comment we first use
this result to derive the scaling properties of the critical
current I, at which the I-V curve crosses over from
linear to nonlinear behaviour. Such a crossover has been
studied in thin gold films.>3 Relation (2) is the continu-
um analog of Aharony’s result® for random resistor net-
works (RRN’s). Our result is used to propose a possible
explanation for a reported experimental observation?
within the framework of percolation theory. We then re-
mark that this result can be generalized to strongly non-
linear RRN’s perturbed by a different nonlinear term.
Confining ourselves first to a perturbed linear system, we
define the effective conductance X, the nonlinear conduc-
tance A, and the critical exponents ¢ and &, via

2=creLd*2 s
0_e~§—l/v s
t=+(d—2)wv,
A =aeL“'74 s

where £~ |p —p,.| " is the percolation correlation length,
and we consider systems whose size L is larger than &.
Rewriting (1) as

I=(Z+A4V3V , 4)
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we can find the critical current by equating the two terms
on the right-hand side (rhs) of (4):

V.=(2/4)"?, ) (5)
Sp=0802/02~L %", 6

which defines the exponent «, and using (2), (3), and (5),
we obtain

IC~Ld*10.£?l+K/l>/2 . (7)

Now we can use existing estimates for the values of k
(Refs. 4 and 5) and ¢ (Ref. 6) in binary RRN’s to find that,
in d =2, 3, 4, 5, and 6, respectively, (1+«/t)/2=0.95,
0.86,0.83,0.83, and 3.

However, there are percolation models where this ex-
ponent is much larger than any of these values: for ex-
ample, in two-dimensional random void continuum per-
colation one can use existing results to deduce I, ~o%!.
Gefen et al.? found, in a physical two-dimensional per-
colating system, that this power is 1.47%0.1, which is
larger than existing bounds on the universal value in
binary RRN’s.>3 They therefore concluded that this
discrepancy may indicate a conduction mechanism other
than percolation. However, their system may simply be-
long to a different universality class of percolation, thus
allowing for such a result without having to invoke a new
mechanism.

Relation (7) can be easily generalized to strongly non-
linear media perturbed by another nonlinear term

a a a,—a
J=0,E '"+a,E? a,>a,, aq,E? '<<o,. (8)

The exponents ¢(a;) and {(a,) now depend on a;: they
have the same meaning as in the linear case (a;=1), but
the relation between them generalizes to

t(al):é-(al)+(d_]_al)v

(Ref. 8). One can define the higher-order cumulants® 8¢
and, consequently, the quantity

I—K(q,a]) ]

809 /a9~L""9|p —p, 9
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For noninteger values of g this quantity can be expressed
in terms of moments of the current density as in the
discrete case.” SH’s result (2) can now be generalized to
(see also Ref. 3)

I d—1+da,[1/(a;+1)—1/(ay—a,)]

c

~L

e

/(a+ D+«l(ay+ D /(e + 1), ]a; a,—atla))
o .
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(a,+1)/(a;+1)
a,~L%o,* L (10)

Repeating the considerations of Egs. (4)—(7), we find in
this case for the critical current

(11)

So far we have focused on systems larger than £. When L <<§, we can write

[¥(g,a))—q&la))])/v
50 /09~L ,

where ¥ characterizes the scaling of the gth cumulant of the global resistance distribution due to local resistance fluc-
tuations®*>"? [note that {(a,)=1(1,a,) and ¥+q(dv—E)=k+dv],

[SR q]c NLtb(q,al)/v )

Since o, scales as L ~'"¥

I.~L

¢

Clearly, if a, > a,, the restriction in (8) may break down
for small enough fields. In this case, as the system be-
comes very large, only the small fields (or currents in net-
works) dominate, and the roles of «a; and «a, will be ex-
changed. Therefore, interchanging «; and a, in the
above results yields the critical exponent for the critical

da|[1/(a;+ 1) —1/(ay—a)]+[{/(a;+ Dv][a (e, + 1) /(ay—a)) = 1]—=[a; /(a,—a; W]P[{a, + 1) /(o) + 1), ]

(12)

, (11) can be rewritten as a function only of L:

(13)

current in these systems.
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