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We study nonlinear dielectrics obeying D = E(.!?‘)~“E. The solution to the eletrostatic 

equations is found to be unique for m > (Y = 1 /(p + 1) > 1 i(d - 1). We find the electrostatic 

fields produced by a point charge and by an infinite charged slab in such a medium. Two 

definitions of the effective dielectric constant, l ,rr, are shown to coincide. For the case where E 

varies in space we show that the differential equation for the first correction to the potential 

field is dipolar in scaled coordinates. We use the first correction to bound cert. Finally we 

formulate the explicit time dependent equations that describe the dynamic behavior of the 

magnetic and electric fields in such materials. 

1. Electrostatics of the nonlinear dielectric medium 

1.1. Uniqueness of solution 

Let us assume a nonlinear dielectric medium (NDM) that satisfies [l] 

D = e(E’)““E, B=pH and J=uE, (1.1) 

where E, p and (+ are field independent but may depend on the coordinates. 

Consider a finite region of space that is occupied by charged conductors at 

specified potentials and assume there are two different solutions for the field, 

EL = -V@; (i = 1,2) that satisfy the same boundary conditions. The system 

under study occupies a volume confined between the conductors surfaces and 

the surface of a sphere of very large radius R. Defining 

x = (E, - E,) * (0, -02) > (1.2) 

we integrate over this volume by parts, use Gauss theorem to drop the 

difference div(D, - 02) and note that on the conductors boundaries the 

surface integral vanishes. Then we are left with 
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D,).dS, (1.3) 
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where S is the spherical surface at radius R. At large R the charged conductors 
are seen as a point charge which gives rise to a field that satisfies (see below) 

]0D]- R- (2d-3+(d-2)P)l(l+P) 
(1.4) 

Inserting (1.4) into (1.3) we see that I, vanishes for 

(1.5) 

where (Y is the power analogous to the nonlinearity strength in nonlinear 
resistor networks (NRRNs) [2-81. Hence the 1.h.s. of (1.3) is identically equal 
to zero. Examining the integrand, x, we observe that for all functionals D(E) 
that increase monotonically with E, we must have x > 0. This condition is met 
for all values of p > -l(cy > 0). Therefore for the integral to vanish we must 
have E, = E2 which concludes our proof. Note that this proof is limited to 
values of /3 that satisfy (1.5). It was found that for nonlinear resistor networks 
[4] there exist more than one solution for values of p < -1 (negative values of 
a). So in this respect our result is consistent. However, it was shown [3] that a 
unique solution exists even for 0 < (Y < 1 l(d - 1). Thus we suspect that our 
proof may be too restrictive and perhaps uniqueness can be shown with a 
relaxed condition on p. We would also like to point out that unlike most 
existing proofs of uniqueness, this proof does not lean on superposition 
whatsoever. 

1.2. Fields of a point charge and an infinite charged slab in an NDM 

1.2.1. A point charge 
To find the field induced by a point charge, q, in an NDM we use Gauss 

theorem, 

I 
D;dS=4nq, (1.6) 

and the spherical symmetry, to construct a spherical envelope for the surface of 
integration in (1.6) to obtain 

D, = qr’-di , (1.7) 
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where i is a unit vector in the radial direction. Consequently we have for the 

fields 

u 

r(‘-“‘“i I+(l-d)a 
. (1.8) 

1.2.2. An infinite charged insulating slab 
Assume an infinite 3D insulating slab of thickness t, lying in the y-z plane 

that has a charge density cp and a dielectric constant E, over its volume as 
opposed to the external one E,. From symmetry considerations the field is in 
the x-direction, is only x-dependent and if we choose the center of the slab as 
x = 0 then it is invariant to mirror imaging around the y-z plane. Hence, by 
using Gauss theorem 

D;,(x) = 4n(px and Dc,ut(~) = 2n(pt?? , (1.9) 

where f is a unit vector in the x-direction. From (1.9) we find 

and 

E = ““t 

and 

Ey (t/2 - 1x1) - tEsT 1 2((Y+1) ’ 

(1.10) 

(1.11) 

where we imposed @ = 0 at x = 0. The case of a conducting slab can be treated 
in exactly the same way leading to the same field outside the slab and a zero 
field inside it. 

2. Inhomogeneous medium 

We define cp as the volume charge density and let @ vanish on the boundaries 
of the system. The energy density in the medium is 

6~ = 
I 

69 Q(r) du . (2.1) 
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Using Gauss theorem and integrating by parts we obtain two integrals, one of 
which vanishes due to the boundary conditions leaving us with 

6u= & 
I 

E.SDdv. P-2) 

For p > -1 we can express 6D in terms of E and after some easy algebraic 
manipulations one finds 

6(E - D) = E( p + 2)(E’)“*(E * 6E) 

i3+2 =-E.&D. 
P+l 

Inserting (2.3) into (2.2) we identify 

1 

u = 47F(a + 1) 
E,Ddv 

(2.3) 

(2.4) 

as the exact energy in our system. In the following we consider an NDM free of 
charges confined in the x-direction between two parallel plates L apart that are 
held at a constant potential difference, Q+, = I&L with @(x = 0) = 0. The other 
boundaries in the perpendicular directions are assumed to be far away and at 
zero potential. We may define the effective dielectric constant, l ,rr, in two 
different ways: 

(0) = E$,‘(E;)~‘~E, 

and 

(U) = E$:(E;)1+p’2 . 

We can show that [l] 

1 

u= 4lr((Y+l) I E,* (D) . 

(2.5) 

(2.6) 

(2.7) 

Now inserting (2.5) into (2.7) and comparing the result with (2.6) we obtain 

E(l) = ew = 
eff eff 

E 
eff 9 (2.8) 

i.e., the two definitions are equivalent. The above calculation renders another 
interesting relation [l]. From (2.6) we have 
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4n(a + l)(U) = E - (D) = e;,(D)“+’ , 

while from (2.4) we obtain 

47r((u + l)(U) = (E-D) = (?V+‘). 

Comparing the last two expressions we find 

(ePaDu+‘) = E;;(D)a+’ . (2.9) 

As we turn to consider E that varies with the spatial coordinates we note that 
there are two exactly solvable geometries. 

i) Regions of different dielectric constants whose boundaries lie perpendicu- 
lar to the capacitor plates. In this configuration E does not change in the field 
direction and we find 

(D) = Eop” c P,E;, 
I 

(2.10) 

where the summation is over the i different components of the system, and 
where pi is the concentration of the ith component. It follows that 

E,ff = c pie; . (2.11) 

ii) Slabs of different dielectric constants that lie in parallel to the plates. Now 
a similar calculation yields 

Hence we find that in this geometry 

(2.12) 

The last two results are analogous to parallel and series summations of 
conductors in NRRNs. 

Now consider diluted media constructed of small homogeneous regions of 
different values of E, where the distribution of l i is narrow around q,, 

44 = C O;(r)q 
I 

(2.13) 

and where O;(r) = 1 within the ith region and vanishes outside. We note that eeff 
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is minimal for a given e(r) once E(r) is the exact electric field [9]. It then 
follows that to leading order in e(r) - l O the first correction to eeff is 

kff = _: I (44 - Eo) 7 [ 1 IWl 8+2 du 

0 

= c PiEi - E. . 

Relying again on this minimum property [9] then some manipulations [l] lead 
to the second correction, 

(8 -I- 2)E,‘B+*’ 

s2Eeff = (d - 2)&((Y + 1)V i 
2 1 ei(r)8~#(# [E-GE\ du. (2.14) 

Hence we need only the first order correction to the field 6E. From div D = 0 

and assuming E #O, we get 

E*(edivE+E-VE)+@zEjEk s=O. 
i.k I 

(2.15) 

Expanding E and E to first order, using Gauss theorem again and substituting 
for the unperturbed field yields a differential equation for 6E. Transforming 
this equation to resealed coordinates yi = y,, x’ = X/J/~ and substituting 
into (2.15) we obtain 

(2.16) 

where div’ is the divergence taken in the primed coordinates. Eq. (2.16), 
however, is exactly Poisson’s equation for the potential field produced by a 
sheet of electric dipoles at the internal interfaces. 

Now we can solve this linear problem as in the literature 191 to find the first 
order contribution to 8*eeff, 

(2.17) 

where 77 = E/E~, ad is the surface area of a unit sphere in d-dimensions, the 
sum runs over all the grains and V,, is a spherical volume around the pth grain 
that contributes to the near field in it. Partitioning the sums within given 
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regions of different dielectric constants, so that /A E i and Y E j,one finds 

(2.18) 

where gji is the partially summed correlation function 

gijCr’, P’) = C C e,(r’)e,( p’) . 
/ALEi YE] I” VW 

The difference between this case and the linear one now follows from the fact 
that while there g, was spherically symmetric, here it has an elliptic symmetry. 
So we can bound the near field contribution to the second correction and 
consequently, after evaluating the far field contribution we find an exact lower 
bound for ?j2neff and hence for l ,rf = ~(1 + Sn + 46’7) 

(2.19) 

3. Propagation of wave in an NDM 

To study the electrodynamic behavior within an NDM we chose the geome- 
try of an infinite slab of thickness W (in the z-direction) embedded in vacuum 
and a source outside it. We set the axes such that 

E = Ei and H= Hi, (3.1) 

where E and H are scalar functions of z and the time only. By Maxwell’s 
equations and via textbooks derivation we have 

aH aD 

a2 at 
+aE, 

dE dH 
a.2 pat’ 

where j.~ is assumed constant in the entire space. It follows that 

(3.2) 

(3.3) 

(3.4) 
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Eqs. (3.2) and (3.3) in addition to appropriate boundary conditions determine 

the transmitted and reflected waves. By applying standard boundary conditions 
considerations one has for the fields outside the slab 

H(z, t) = e E(z, t) . (3.5) 

Defining the function 

we look for a solution for E that has the form 

E = G[t - (z - z&M(E) + t,] , (3.6) 

where t,, is a constant and z,, is some point that lies outside the slab in the 
region z < 0. Assuming G(U) is differentiable at least once, we find 

aE 

ez- --M(E) $. 

Assuming u = 0 we can now find H as a function of E: 

(3.7) 

(3.8) 

which can be verified by differentiation and using (3.7) to compare with the 
direct derivatives (3.2) and (3.3). Rewriting (3.4) 

$ = /.LE(P + 1) [Ei $ + p (2) g] E,IEI’-*, (3.9) 

we find the two equations that govern the electromagnetic behaviour of a wave 
in an NDM. 

To conclude, we studied continuous media that obey a power-law relation 
between D and E. We have found the static potential field generated by a point 
charge and by an infinite slab within such homogeneous media. We have shown 
that the static solution is unique for ll(d - 1) < (Y <m where (Y is the non- 
linearity strength, which agrees almost completely with known results found for 
the conductivity of nonlinear resistor networks [3,4]. For 0 < (Y < 1 l(d - 1) we 
were not able to prove uniqueness, although the solution is such for finite size 
systems [ll] in this range. Next we introduced two definitions for c,rf in 
inhomogeneous media via (0) and ( U) and showed them to be equivalent. 
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We found the corrections to the fields and bounded the effective dielectric 
constant for all (Y. We think our method is the only one available for treating 

E eff in a strongly nonlinear material because it does not use the superposition 
principle, unlike existing methods [lo] that lean heavily on superposition, and 
are very difficult to extend in a straightforward way to nonlinear media. Then 
we turned to dynamic fields. We introduced the generalised equations that one 
has to solve and found the explicit solution for H(E). 
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