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Abstract This paper is dedicated to Prof. Jacques Friedel,
an inspirational scientist and a great man. His excellence
and clear vision led to significant advances in theoretical
physics, which spilled into material science and technologi-
cal applications. His fundamental theoretical work on com-
monplace materials has become classic. We can think of no
better tribute to Friedel than to apply a fundamental analysis
in his spirit to a peculiar class of materials—auxetic materi-
als. Auxetic materials, or negative-Poisson’-ratio materials,
are important technologically and fascinating theoretically.
When loaded by external stresses, their internal strains are
governed by correlated motion of internal structural degrees
of freedom. The modelling of such materials is mainly based
on ordered structures, despite the existence of auxetic be-
haviour in disordered structures and the advantage in manu-
facturing disordered structures for most applications. We de-
scribe here a first-principles expression for strains in disor-
dered such materials, based on insight from a family of ‘iso-
auxetic’ structures. These are structures, consisting of inter-
nal structural elements, which we name ‘auxetons’, whose
inter-element forces can be computed from statics alone.
Iso-auxetic structures make it possible not only to identify
the mechanisms that give rise to auxeticity, but also to write
down the explicit dependence of the strain rate on the local
structure, which is valid to all auxetic materials. It is argued
that stresses give rise to strains via two mechanisms: aux-
eton rotations and auxeton expansion/contraction. The for-
mer depends on the stress via a local fabric tensor, which we
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define explicitly for 2D systems. The latter depends on the
stress via an expansion tensor. Whether a material exhibits
auxetic behaviour or not depends on the interplay between
these two fields. This description has two major advantages:
it applies to any auxeton-based system, however disordered,
and it goes beyond conventional elasticity theory, providing
an explicit expression for general auxetic strains and outlin-
ing the relevant equations.

Keywords Symmetry · Elastic constants

1 Introduction by Sam F. Edwards

At the end of the war, which had isolated France from the
English speaking world, several French scientists moved to
UK universities, in particular to study solid state theory. The
outstanding person in the UK at the time was Nevill Mott
in Bristol and Jacques Friedel moved to Bristol to work in
Mott’s group. At the time, the field of theoretical physics
was moving into the use of field theory to elucidate ele-
mentary particle theory, a direction favoured in Cambridge
University and in London. The Bristol group, however, spe-
cialised in electronic studies, an area that Friedel preferred.
I remember his papers at that time, which had a wonderful
clarity and discussed down-to-earth type of problems. It was
refreshingly in stark contrast to the renormalisation theory,
which was the fashion in quantum field theory at the time.

Sometime later, Mott moved to Cambridge and Jacques
returned to Paris. This reminds me of my first conference in
Paris, where I gave my first paper. It was nonsense, I regret
to say, for it tried to separate Green functions for the real
and imaginary parts of the wave function. Fortunately, none
of the attendants in that conference exposed it.
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Anyway, I recall Friedel giving wonderful lectures in
Cambridge, where his work was held at very high esteem.
Years later Cambridge University awarded him an Honorary
Doctor of Science and I had the pleasant task of arranging
a dinner for him. Friedel was also involved in setting up the
European physical society, where I was active, and I recall
him giving valuable advice on its structure.

A central sociological problem in theoretical physics is
to choose the problem to work on, for there are many bril-
liant people working at the forefront of the field. Thinking
of Friedel’s work on electronics in parts of systems, it oc-
curred to me that one should be able to do statistical mechan-
ics on continuous systems in contrast to particulate systems.
With my coauthor here, Raphael Blumenfeld, I have devel-
oped this idea by studying the entropy of particulate sys-
tems in the continuum. For example, in conventional ther-
mal systems the entropy S is a function of pressure, vol-
ume, energy and number of particles, S(E,P,V,N) and
one of the most useful concepts it leads to is the tempera-
ture T = ∂E/∂S. We have applied these to granular systems
where the entropy is due to configurational disorder and the
volume takes the role of the energy. Consequently, the ana-
logue of temperature is the ‘Compactivity’ X0 = ∂V/∂S.
There are other quantities that dictate the states of granu-
lar matter, the simplest being the response of stresses to the
entropy, X = ∂σ/∂S, which we called the Angoricity (note
that the Angoricity is in fact a tensor). An even richer and
more general ‘thermodynamics’ is required when we study
mixtures.

This paper is dedicated to Jacques Friedel and, in the
spirit of the close relations of his theoretical works with real
materials, we can think of no better tribute to him than to
present a fundamental theory that aims to understand the
physics of a peculiar class of materials—auxetic materials.

2 General Introduction

Auxetic materials, i.e. materials with negative Poisson’s ra-
tio, expand when stretched and contract when compressed,
in contrast to most conventional materials. This is due to cor-
related degrees of freedom in the internal elements that these
materials are made of. These elements are reversibly fold-
able and, in effect, can be regarded as the basic constituents
of cellular solids. In the following, we call these foldable el-
ements ‘auxetons’. Macroscopic auxetic structures can be
manufactured of polymers [1] or metals [1, 2]. They can
exist on a range of length-scales and, in particular, can be
constructed out of molecular building blocks [3–5]. Auxetic
materials are useful in applications requiring high shear to
bulk moduli or compactification on impact, e.g. for energy
absorbing materials and bullet-proof armours.

Both natural [6–9] and man-made [10, 11] auxetic ma-
terials have been discovered, made and studied. Much of

the theoretical analysis, however, is carried out on ordered
models, such as two-dimensional inverted cell honeycombs.
Although models of the auxeticity phenomenon in ordered
structures is convenient for analysis purposes, the ubiquity
of disordered such materials and the little existing under-
standing of deformations in the presence of disorder require
a more general theory. Here we describe such a theory, based
on a recent suggestion made in [12].

The aims of this paper are the following. First, we de-
scribe a new family of disordered auxetic structures, called
iso-auxetic (IA) structures, for which it is possible to iden-
tify clearly the basic strain mechanisms. Second, we show
that elasticity theory is not necessary for the description of
auxeticity, implying that using a negative Poisson ratio as a
descriptor has a limited utility. Third, we present an explicit
expression for the auxetic strain in terms of local expansive
and rotational fields. In this expression, the fields are cou-
pled to the stress through well-defined tensors, which we
discuss. Fourth, we show that auxeton rotations are essen-
tial to the understanding of the global behaviour and that the
rotational field can be modelled without resorting to non-
symmetric stresses. This obviates models based on Cosserat
theory [13].

The paper is structured as follows. We first introduce the
new family of IA structures. These are structures whose
inter-auxeton forces can be determined from statics alone.
This property distinguishes IA from more conventional aux-
etic structures, which we term elasto-auxetic (EA). Specif-
ically, the stress field equations of isostaticity theory dif-
fer significantly from those of conventional elasticity in that
they are based on local stress–structure relations, as opposed
to the usual stress–strain relations [14–16]. We next describe
an extension of a recent result for yield of granular systems
to IA structures and write down explicitly the IA strain equa-
tion in terms of two local fields: an expansive and a rota-
tional. It is then argued that the mechanism for auxeticity de-
pends only on these two fields and is therefore independent
of the particular way that the structure transmits stresses,
whether isostatically or elastically. Hence, the auxetic ex-
pression for the strain is valid for all auxetic materials. This,
in turn, implies that general auxeticity needs to be described
by a theory that goes beyond elasticity. A particular impli-
cation of this conclusion is that a negative Poisson ratio in
auxetic materials should be regarded only as a descriptor of
the ratio of strains in perpendicular directions, not as a ra-
tio of elastic moduli. We also argue that, although the form
of the strain expression is the same for all auxetic materials,
the strains developing in IA structures differ markedly from
those developing in EA structures under the same loading
conditions. We conclude with a discussion of the results.
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Fig. 1 Examples of auxetons made of three-contact building blocks.
Each auxeton can expand and rotate when forces are applied to its ends,
termed ‘contacts’ in the text

Fig. 2 A section of a disordered auxetic structure, made of joining
auxetons at their contacts. The contacts are joined by straight lines
(blue dashed) into a triangle. These triangles are then used to char-
acterise the contact network in a well-defined manner

3 Iso-auxetic Structures

In the following discussion, we consider planar auxetic ma-
terials made of 2D elementary units that connect to their
neighbours at exactly three points. We call these elements
‘auxetons’. Aiming at a theory of disordered materials, we
do not require that the auxetons be identical, nor that the
system possess any type of symmetry, translational or other-
wise. Rather, we consider systems whose auxetons comprise
a mixture of irregular sizes, shapes and orientations. A wide
variety of such structures can be constructed, some of which
are illustrated in Fig. 1.

We constrain our auxetons to have three ‘contacts’ with
their neighbours and connect these contacts by imaginary
straight lines into triangles (the dashed blue lines in Fig. 2).
This construction results in a planar graph of triangles, con-
nected at their vertices. The triangles enclose polygons,
which we call cells in the following.

When loaded by external forces, the auxetons transmit
those to one another through ‘inter-auxeton’ forces. The
contacts between auxetons may or may not be free-jointed.
One expects the latter to be more common, in which case a
contact can support a certain threshold of torque moment

without yielding. This gives rise to a finite overall stress
threshold for straining the material. Consider then a struc-
ture, made of N (!1) auxetons, stressed below the yield
threshold by a set of external forces. Below the yield thresh-
old, the system is in mechanical equilibrium and all the
inter-auxeton forces and torques are balanced. Since every
auxeton has three contacts then the number of contacts is
3N/2+O(

√
N), where the latter term is a boundary correc-

tion, which can be neglected for N ! 1. Since each contact
transfers one force vector, there are overall 3N internal force
components. These can be determined uniquely by the three
balance equations for every auxeton—one of torque and two
of force components. It follows that this structure is stati-
cally determinate, or isostatic. Hence the name iso-auxetic.
A familiar textbook statically determinate system is that of a
ladder on a frictional floor leaning against a frictionless wall.
The forces that the wall and the floor apply to the ladder can
be determined uniquely from its three balance equations. It
is important to note that, as in the case of the ladder prob-
lem, the determination of the discrete inter-auxeton forces
requires no knowledge whatever of the elastic properties of
neither the auxetons nor the contacts. Since the stress field
is nothing but a continuous representation of the large num-
ber of inter-auxeton forces, it must reflect the nature of the
discrete solution and therefore also be independent of local
elastic moduli. It follows that elasticity theory, which does
rely on knowledge of the elastic moduli, is inapplicable for
IA structures.

For later discussion, it is useful to recall the continuum
2D stress equations of isostaticity theory—the theory of
stresses in isostatic structures,

∂σij

∂xi
= gj , (1)

σij = σji , (2)

Qijσij = 0 (3)

Equations (1) and (2) represent force and torque balances,
respectively, with σ the stress tensor and g external and body
forces. Equation (3) is a constitutive relation between the
static stress and the local structure, which is characterised
by a symmetric fabric tensor Q [17–19]. This replaces the
stress–strain relations in conventional elasticity and is in-
deed independent of the elastic moduli of the material.

In most known isostatic systems these equations are hy-
perbolic, leading to solutions that ‘propagate’ along charac-
teristic paths in the material. This means that the response
to a localised force source in 2D is generically a pair of
force chains. In contrast, EA materials respond to localised
sources by ‘dispersing’ the stress field in all directions, sub-
ject to local stress–strain relations. The difference between
the two types of solution stems from the nature of the stress
field equations—while the equations of elasticity theory are
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elliptic, (1)–(3) those of isostaticity theory are hyperbolic.
The different stress transmission is bound to affect macro-
scopic behaviour, as will be discussed below.

The global auxetic behaviour is the result of local fold-
ing and unfolding of auxetons when stressed. This local re-
sponse is independent of whether the rest of the structure
is isostatic or not, it depends only on the local expansion
and rotation of the auxetons. This leads to the conclusion
that the strain can be written in terms of local expansion
and rotation fields regardless of the isostatic or elastic na-
ture of the material. This conclusion is significant for two
reasons. One is that, in IA, the stress is independent of elas-
tic moduli. The other is, that in IA we can write the strain
explicitly in terms of the expansion and rotation of auxe-
tons, which means that the same expression holds for EA
materials. This gives insight into the description of auxetic-
ity in general and in particular into the coupling between the
local strain and the local structure. Additionally, this sug-
gests that elastic constants need not play as major a role as
in conventional materials. Another important implication is
that the negative Poisson ratio, which such materials exhibit,
is only a descriptor of the ratio of perpendicular strains and
is of little use in terms of describing bulk elastic moduli be-
cause these cannot be obtained by simple homogenisation
of small-scale regions. It is also worthwhile to note, before
we continue, that this description should apply not only to
all auxetic materials made of foldable auxetons, but also to
those made of rigid ones [20].

Before we proceed, we must comment on a much debated
issue: whether or not auxeticity theory necessitates resorting
to Cosserat stress theory [13], which allows for existence of
a non-symmetric stress tensor. This is not a question of for-
malism, but rather of the underlying physics. A symmetric
stress tensor means that residual torque moments vanish on
the continuum length-scales. Differently put, it means that
there are no external couple moments on the system that re-
quire balancing mechanically by the mechanical stress field.
By letting the stress tensor be non-symmetric on macro-
scopic scales, Cosserat theory implies that there exist exter-
nal couples that the stress must balance. Thus, a theory that
invokes only symmetric stresses does not resort to such ad-
ditional input and must be preferable for modelling of large-
scale auxetic behaviour. For this reason we prefer the above
formulation, which includes (2).

Furthermore, it is important to point out that a symmet-
ric stress tensor can still allows local rotations in the material
upon straining. In other words, although the stress field must
be symmetric under no external couples, the strain field may
have non-symmetric contributions. Indeed, local such con-
tribution arise from rotation of auxetons and it is at the core
of auxetic behaviour, as will be discussed in the next section.

4 Auxetic Strain and Field Equations

To relate the strain to the local structure one has to have
first a quantitative description of the structure, however dis-
ordered. Such a descriptor is the fabric tensor Qij of (3).
This tensor plays a key role in modelling auxetic strains, as
will be seen below. Consider a disordered structure of aux-
etons, comprising an arbitrary mixture of elements, such as
those shown in Fig. 1. The model to be described below has
been discussed initially in [19] and it is general in that it ap-
plies to any arbitrary structure of the above auxetons. Specif-
ically, the disorder can involve both auxetons of different
sizes and of different shapes. Connecting the three contact
points around each auxeton by straight lines, as described
above, the plane is tiled into a network of triangles of differ-
ent sizes and shapes, all interconnecting at their vertices—
the contact points. The triangles enclose polygons, which we
call in the following cells. According to Euler’s relation,1

a system of N ! 1 such auxetons would have two auxe-
ton per cell. This value has small corrections from bound-
ary auxetons (due to unshared contacts), but this correc-
tion is of order ∼1/

√
N and therefore negligible. All tri-

angle edges are assigned directions, making them into vec-
tors r that circulate the triangles in the anti-clockwise direc-
tion (Fig. 3).

Every triangle is assigned a centroid, defined as the mean
position vector of its three vertices. Similarly, every cell is
assigned a centroid, defined as the mean position vector of
the contacts (triangle vertices) that surround it. In mechani-
cal equilibrium, the cell polygons must be convex to be sta-
ble. This means that a vector Rcg, extending from the cen-
troid of triangle g to the centroid of one of its neighbour
cells c, intersects one of the triangle edge vectors, which we
can index rcg (Fig. 3).

The vectors Rcg and rcg can be regarded as the diagonals
of a quadrilateral, called ‘quadron’, which plays a significant
role in granular and cellular physics [22–24]. Each quadron
is associated uniquely with a pair cg (see Fig. 4). This con-
struction allows us to quantify the local structure by describ-
ing the shape of every cg-quadron tensorially with the outer
product

C
cg
ij = r

cg
i R

cg
j (4)

The tensor appearing in the isostaticity stress equations is
the symmetric part of Ccg , summed over the cells around
triangle g

Qg = 1
2
ε
−1 ·

( ∑

c around g

[
Ccg +

(
Ccg

)T ])
· ε (5)

1This relation was discovered by Euler circa 1750. See [21].
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Fig. 3 Characterisation of the auxeton structure in 2D. We make the
edges of the representative triangle g into vectors, rcg , by assigning
the edges a direction such that they circulate around the triangle in the
anti-clockwise direction. The vector Rcg extends from the centroid of
the grain contacts to the centroid of an adjacent cell c

Fig. 4 Quadron tessellation in 2D. The vectors rcg and Rcg make the
diagonals of the cg-quadron. The quadrons are the elementary units
that tessellate the system. The quadron shape is quantified by a local
structure tensor, C

cg
ij = r

cg
i R

cg
j

where ε is the π/2 rotation matrix in the plane (the Levi-
Civita matrix) and CT is the transpose of C.

Armed with a quantitative description of the local struc-
ture, it is possible now to relate it to the strain. Suppose that
the structure is in mechanical equilibrium under a set of ex-
ternal forces and these forces are increased. Eventually, the
system crosses what is known as the yield surface and it
starts deforming. As will become clearer below, whether the
deformation is auxetic or not depends on the structure of the
auxetons, their configuration and the magnitude of the local
stresses. The aim of the following is to describe the equa-
tions that govern the strain, given the local structure and the
local stress.

Central to the model is the observation that only auxeton
rotation and expansion (or shrinking, which can be regarded

as negative expansion) can give rise to displacement. The ex-
pansion corresponds to pure folding/unfolding of auxetons.
Thus, the local strain e, due to changes in shape and vol-
umes of the triangles, can be written as a superposition of
a rigid triangle rotation, erot, and triangle (non-uniform) ex-
pansion, eex. For example, auxetic materials composed of
rigid auxetons, such as those studied in [20], can be de-
scribed by erot alone. In the following we consider only the
symmetrised strain, but there is no reason why the treatment
should not apply to non-symmetric strains equally well.
Note that the dependence of the strain on the stress is only
through the responses of both these modes of motion to lo-
cal stresses. This is, in fact, the main difference between this
theory and elasticity-based descriptions that relate directly
the strain to the stress.

The (symmetrised) strain due to rotation at the centroid
of auxeton g is given directly by the tensor Qg [25],

e
rot,g
ij = Q

g
ijklθ

g
kl (6)

where θ
g
kl is its angle of rotation, which depends on the local

stress. Equation (6) is written so that it holds both in 2D and
in 3D. In 3D, this expression is symmetric under exchange
of the indices i and j , but anti-symmetric under exchange
of k and l. This is due to the anti-symmetric nature of the
description of the axes of rotations kl. In 2D, there is only
one axis of rotation, perpendicular to the plane, and the in-
dices kl are redundant, which reduces Qijkl to the tensor
Qij of (5). This expression has been derived first in [25] for
granular media, where it gives rise to dilation. It comprises
the only relevant contribution to the strain when the auxetons
are rigid and, as such, should also describe well the systems
discussed in [20]. For what follows, it is important to note
the observation in [17, 18] that Q is a measure of the local
rotational (or chiral) deviation of the auxeton from a global
zero average. This rotation is best quantified by the sign of
Tr{Q}.

When elements can also fold and unfold, their expansions
depend on the local stress. Significantly, there is no reason
to expect that auxeton expansions be isotropic; depending
on the choice of shape and the local structure around them,
auxetons may expand differently in different directions. The
expansive strain rate can be related directly to the local stress
via

e
exp,g
ij = E

g
ijklσ

g
kl (7)

where the non-isotropic expansion can be modelled into Eg

and different auxeton shapes would be described by different
such matrices. Limiting the description to symmetric strains
imposes some constraints on the local expansion tensor E,
making its properties similar to those of the conventional
compliance matrix in linear elasticity. However, such simi-
larity would not exist for non-symmetric strains. For exam-
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ple, for such strains, E need not be symmetric under ex-
change of i and j . It is important to note that, whilst the
strain may have non-symmetric components, for example to
describe large-scale vorticity, the stress cannot if there are no
external couples to balance the excessive torque. This is one
of the reasons that the following theory cannot be mapped
readily to elasticity theory, nor to Cosserat theory.

The total strain can be written then as

e
g
ij = E

g
ijklσ

g
kl + Q

g
ijklθkl

(
σ g

)
(8)

This relation is reminiscent of the yield equations in granular
systems [25], but for two important differences. One is that,
in granular systems, the rotating elements (the grains) can
also slide relative to neighbours, a mechanism that auxetons
do not possess, which gives rise to an additional, plasticity-
like term. The other difference is that auxetons can fold and
unfold (the E-dependent term), which rigid grains cannot.

Relation (8) makes good sense on the auxeton level.
However, to be of use to materials that contain many aux-
etons, it must be coarse-grained (homogenised) to the con-
tinuum. To this end, one must average it over small volumes,
containing sufficiently many auxetons. The expansive term
on the right hand side of (8) gives no problems—one can
average E and σ independently to obtain a continuum-scale
contribution. This is no different than the practice in conven-
tional elasticity and plasticity models.

In contrast, the rotational term requires a careful consid-
eration. Coarse-graining over the rotation field of a region
of volume V , 〈θ〉 = (1/V )

∑
g θg , can be carried out by re-

placing the volume average by a surface sum (or integral, for
large enough regions), using Stokes theorem. This leads im-
mediately to the observation that the contribution to such an
average comes only from the boundary of the region. Hence,
if the system does not rotate globally, then the rotation per
auxeton decays fast as the averaging volume increases and
the macroscopic rotation has a zero average. It turns out that
the tensor Q possesses exactly the same property. Since this
tensor measure the local chiral fluctuation of an element, an
average over a region decays to the global zero average at
exactly the same rate as 〈θ〉.

On the face of it, these two observations may seem to im-
ply that the rotational contribution to the strain vanishes on
large scales. This, however, is not the case. The reason is
that both θ and Q possess the same local anti-correlations:
when one auxeton rotates in one direction, elements in con-
tact with it are more likely to rotate in the opposite, rather
than in the same, direction. Similarly, if the tensor Qg mea-
sures the rotation of an auxeton at a given direction, nearest-
neighbours of g are more likely than not to have Q’s whose
trace has the opposite sign. This anti-correlation means that,
while each of these terms averages to zero independently
over increasing regions, their product 〈Qijklθkl〉 adds con-
structively over nearest neighbours, leading to a finite large-

scale average. It is exactly this average that leads to measur-
able bulk strain due to rotations of rigid particles in granular
systems (dilation). We therefore conclude that (8) has a well
defined homogenised large-scale version

eij = Eijklσkl + Qijklθkl

(
σ
)

(9)

The only remaining question is how to derive local contin-
uous expressions for the rotational term. This can be done,
using the renormalisation approach taken in [26]. A word
of caution: the existence of a macro-scale continuous theory
does not imply that the strain is auxetic. Relation (9) gives
the correct dependence of the strain on the local fields, but
whether the ratio between perpendicular strains (Poisson’s
ratio) is negative or positive depends on the relative contri-
bution of the two terms on the right hand side of this relation.

The advantage of relation (9) is that it identifies the pre-
cise role that the local structure plays in the coupling to the
strain and the stress. As such, it is an important ingredient
in the field equations of auxeticity theory. To complete the
theory for IA structures, one still needs the local rotational
response to the local stress, θkl(σ ). This relation is still miss-
ing and work to derive it is ongoing. Thus, the full set of
auxeticity field equations in d dimensions consists of:

(i) d(d + 1)/2 balance equations (1)–(3);
(ii) d(d − 1)/2 strain equations (9);

(iii) d(d − 1)/2 rotation–stress response relations, θkl(σ ).

As in any theory, constitutive information is required.
For the theory described here, this comprises the consti-
tutive tensors E and Q, which could be obtained either
phenomenologically or modelled theoretically for specific
structures.

The solution for quasi-static deformation then proceeds
as follows. First, one solves for the stress field from (1)–(3).
From this solution one finds the local rotational field θkl(σ ),
using the local rotation—stress relation. Substitution of the
rotational field, the constitutive fabric tensor Q and the ex-
pansion tensor E into (9) one then derives the total local
strain.

Since the dependence of the strain on local rotation and
expansion of elements is valid regardless of the stress state,
then all this theory, but for the stress field equations, applies
to any auxetic material. In particular, it also applies to EA
materials, where the stress equations should be replaced by
those of elasticity theory. In other words, for EA, only the
closure relation (3) is replaced by Saint tenant compatibil-
ity conditions [27], supplemented with phenomenological or
modelled expression for the stress–strain relations.

5 Discussion and Conclusions

To conclude, we have described a theory for strains in aux-
etic materials. The theory’s main contribution is the explicit
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relation between the local auxetic strain and the local ro-
tation and expansion of auxetons—the elementary building
blocks of auxetic materials. This is a refinement of the cur-
rently existing elasticity theory which lumps these two con-
tributions together into a stress–strain relation. The iden-
tification of these strain mechanisms makes it possible to
eventually derive such a relation, since the local magnitudes
of auxeton rotations and expansions do depend on the lo-
cal stress. However, the explicit decomposition to rotation
and expansion give insight into the correct symmetries and
details of such a stress–strain relation.

Furthermore, using elasticity theory for IA could lead to
erroneous results, which originate from two sources. Firstly,
the stress state cannot be derived from elasticity theory and
is likely to exhibit non-uniform force-chain-like fields. Sec-
ondly, the rotational and expansion responses to the stress
are of completely different nature. For example, the averag-
ing properties of Q and E are completely different—while
the has a well-defined macroscopic homogenised value, the
former does not. This is despite both terms having ho-
mogenised large-scale contributions.

A significant implication of the above is that all aux-
etic materials, whether IA or EA, must follow the univer-
sal strain relation (9). However, the stress state, which de-
termines the local rotation and expansion of auxetons, de-
pends on the correct stress description and this may vary
between different families of materials—isostaticity theory
for IA and elasticity theory for EA. This then leads to the
intriguing conclusion that the auxetic behaviour of IA and
EA materials should be markedly different, with the former
exhibiting more non-uniform local auxetic behaviour.

It is emphasised that relation (9) does not ensure auxetic-
ity, but rather it describes correctly the strain as a function
of the local rotational and expansive fields. Whether the ma-
terial exhibits a bulk negative Poisson ratio depends on the
different contributions of the two terms in the strain relation.
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