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Abstract We analyse the general solutions for the stress
field in planar annuli of isostatic media, a model often used
for marginally rigid granular materials in Couette cells. We
demonstrate that these solutions are much richer than in rect-
angular symmetries. Even for uniform media, stress chains
are found to curve, broaden away from the stress source,
attenuate and leak stress into a cone of influence. Most spec-
tacularly, stress chains may bend back and transmit forces
oppositely to the original direction. None of these phenomena
arises in solutions for uniform media in Cartesian coordi-
nates. We further analyse non-uniform media, which exhibit
chain branching and stress leakage from the chains. These
results are directly relevant to the many experiments on gran-
ular materials, carried out in Couette cells. They also shed
light on, and are supported by, hitherto unexplained exper-
imental observations of curved and back-bending chains,
which we point out. In particular, we use our results to pro-
vide a new interpretation for the pattern of slip lines observed
experimentally.
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1 Introduction

The ubiquity and significance of granular matter (GM) have
focused scientific and technological attention for millenia [1],
but the theoretical understanding of this form of matter is far
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from complete. One of the most important theoretical chal-
lenges is the development of a theory of stress transmission in
dry such media. Predicting stress is essential to a wide range
of technological and geo-mechanical applications, as well as
being a springboard for modelling the dynamic behaviour of
GM. Experimental observations of nonuniform stress trans-
mission in GM, e.g. via ’force chains’, date back to the 1940s
[2–4], with modern experiments revealing detailed features
of this phenomenon [5–7]. The limitations of conventional
theories, such as elasticity, to account for force chains led
to investigations of ideal systems: isostatic media. These are
statically determinate and marginally rigid aggregates, char-
acterised by a low mean contact (or coordination) number,
whose intergranular forces can be determined, in principle,
from balance conditions alone. The stress equations of iso-
staticity theory are hyperbolic, differing markedly from the
conventional elliptic equation of elasticity theory [8–16].
Understanding these ideal systems is an essential step to a
theory of real GM, which comprise both isostatic regions and
denser regions, where conventional theories are valid [16].

Many physical and numerical experiments are carried out
in cylindrical setups [17–20], yet most theoretical analyses
of stresses in isostatic materials are based on rectangular
coordinate systems. This practice is based on an implicit,
normally little discussed, assumption that the stress chains
phenomenon is independent of the system symmetry. The
purpose of this paper is to show that, at least in two dimen-
sions (2D), this is not the case, namely, that isostatic stress
solutions in cylindrical symmetry have features that do not
arise in rectangular coordinates. This we do by solving
explicitly for the stress field in annuli and then demonstrat-
ing these solutions by examples. Specifically, we show that
uniform isostatic media exhibit stress chains that may curve,
broaden, dissipate and even bend backwards. The character-
istics of these solutions are analysed and their implications
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discussed. Experimental support in the literature for some of
these phenomena are pointed out and interpreted in view of
these solutions.

2 The isostaticity stress equations

In 2D Cartesian coordinates, the isostaticity stress field Eqs.
are [11–15]

∇σ = g (1)

σ = σ T (2)

pxxσyy − 2pxyσxy + pyyσxx = 0, (3)

where σ is the stress tensor, g includes all external and
body forces and pi j are the components of a fabric tensor,
P(x, y), which can be determined directly from the grain
structure [15] and upscaled to the continuum [21]. It has
been shown that the determinant of P is generically nega-
tive [16] and therefore that these equations are hyperbolic
and yield stress chain solutions, [11–15]. Equations (1)–(3)
have been analysed and solved for uniform fabric tensors
[10–14,16], as well as for position dependent ones [22,23].
Yet, in spite of numerous experiments in annuli, e.g. Cou-
ette cells, exact solutions in the literature are often derived
in rectangular coordinates, presumably under the assumption
that the behaviour would not differ significantly in cylindri-
cal geometries. This is not the case. Moreover, since force
chains often originate in very localised regions, down to sin-
gle grains, it is more appropriate to describe the field around
such an origin in polar coordinates.

In polar coordinates, the balance equations are

∂r (rσrr ) + ∂θσrθ − σθθ = gr (4)

∂r (rσrθ ) + ∂θσθθ + σrθ = gθ . (5)

The equations are closed by a stress-structure relation that,
for consistency, has the same form as (3):

πrrσθθ − 2πrθσrθ + πθθσrr = 0. (6)

3 Analysis

Rewriting the stress components of Eq. (6) in Cartesian
coordinates and comparing to (3), a relation can be derived
between the Cartesian, P , and polar, Π , fabric tensors:

⎛
⎝

pxx
pyy
pxy

⎞
⎠ =

⎛
⎝

1 −C −S
1 C S
0 − S

2 C

⎞
⎠

⎛
⎝

πrr + πθθ

πrr − πθθ

πrθ

⎞
⎠ , (7)

where, for brevity, (S,C) ≡ (sin 2θ, cos 2θ). The condition
that det{P} < 0 translates to:

3S2

4

(
π2
rr + π2

θθ

)
+

(
2 − 3S2

4

)
πrrπθθ

−CS (πrr − πθθ ) πrθ − π2
rθ < 0. (8)

From this condition we can determine a region in the consti-
tutive parameter space πrr -πθθ -πrθ , in which the determinant
of Π is negative for all values of θ . Note that this eliminates
a wide range of fabric tensors, some of which were studied
in the literature, e.g. in [11–14,22,23].

To obtain the general solution for the stress, we follow a
similar procedure to the one initiated in [22,23]. Assuming
first that πθθ �= 0, we define qi j ≡ πi j/πθθ and substitute
σrr from the stress-structure condition (6) into Eq. (4). The
resulting balance equations can be written as

A∂ρu + ∂θ (u) − Bu = g (9)

with ρ ≡ ln r/r0, u ≡ (σrθ , σθθ ), B ≡(−2
(
1+∂ρ

)
qrθ

[
1+(

1+∂ρ

)
qrr

]
−2 0

)
and A ≡

(
2qrθ −qrr

1 0

)
.

The characteristic variables, w1,2, can be expressed in terms
of the stress components as

u = Yw =
(

1 1
λ1 λ2

) (
w1

w2

)
, (10)

where λ1,2 = qrθ ±
√
q2
rθ − qrr are the eigenvalues of

A and Y−1AY = Λ is diagonal. Since q2
rθ − qrr =

−det {Π} /π2
θθ > 0, λ1,2 are real and distinct. In terms of w,

(9) becomes

Λ∂ρw + ∂θw = Y−1 (
BY − A∂ρY − ∂θY

)
w + h, (11)

where h = Y−1g.
It is now convenient to parameterise the characteristic

paths by length variables, si : ∂ρsi = 1/λi and ∂θ si = 1
(i = 1, 2). For spatially uniform Π , ∇πi j = 0, this reduces
(11) to the linear form

dw
ds

= Y−1BYw + h. (12)

This equation shows that, even for spatially uniform fab-
ric tensors, w1 and w2 are coupled by the off-diagonal terms
of Y−1BY . This is in contrast to the situation in rectangu-
lar coordinates, where uniform fabric tensors give rise to
decoupled characteristics and to straight path solutions, on
which the stress is constant whilst vanishing elsewhere. The
inherent coupling in polar coordinates makes stress chains

123



Bending back stress chains and unique behaviour of granular matter in cylindrical geometries... Page 3 of 8  29 
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r

Fig. 1 The right hand side characteristic path (in blue), emanating
from a source of width r0δθ at the internal boundary, flares out and
broadens to rδθ (colour figure online)

in annuli a much richer phenomenon, which we proceed to
explore.

Consider the response to a localised stress source at the
inner boundary, r0. Clearly, the linearity of the equations
guarantees that the response to any stress source distribution
can be found by superposition. Along the characteristic paths,
we have ∂ρθ = 1/λi . Therefore, a point source at (r, θ) =
(r0, θ0) gives rise to a characteristic path, whose trajectory
satisfies

θi − θ0 = 1

λi
ln (r/r0) . (13)

It follows that a stress source of width r0δθ at the inter-
nal boundary generates two stress chains whose trajectories
‘flare out’ and broaden.This is illustrated in Fig. 1 for the
right hand side characteristic path.

For completeness, we present an alternative analysis that
allows πθθ = 0. In this case, πrr �= 0 (πθθ and πrr can-
not both vanish lest the equations are no longer hyperbolic).
Following the same procedure as above, we now scale the
fabric tensor, q̃i j ≡ πi j/πrr , substitute from relation (6) into
(4)–(5) and rewrite these as

∂ρv + ∂θ

(
Ãv

)
− B̃v = g, (14)

where Ã ≡
(

0 1
−q̃θθ 2q̃rθ

)
, B̃ ≡

(−1 − q̃θθ 2q̃rθ
0 −2

)
and

v ≡ (σrr , σrθ ). In terms of v, the characteristic variables,
w̃1,2, are now

v = Ỹ w̃ =
(

1 1
λ̃1 λ̃2

) (
w̃1

w̃2

)
, (15)

where λ̃1,2 = q̃rθ ±
√
q̃2
rθ − q̃θθ are the eigenvalues of

Ã and Ỹ−1 ÃỸ = Λ̃ is diagonal. Since q̃2
rθ − q̃θθ =

−det {Π} /π2
rr > 0, these eigenvalues are also real and dis-

tinct. In terms of w̃, (14) becomes

∂ρw̃ + Λ̃∂θ w̃ = Ỹ−1
(
B̃Ỹ − ∂ρ Ỹ − Ã∂θ Ỹ

)
w̃ + h̃, (16)

where h̃ ≡ Ỹ−1g. Unsurprisingly, the forms of Eq. (16) and
(11) are very similar. Again, we see that the characteristics are
coupled by Ỹ−1 B̃Ỹ even for spatially uniform fabric tensors.
The length parameters along the characteristic paths, si , are
now: ∂ρsi = 1 and ∂θ si = 1/λ̃i (i = 1, 2). Along the paths
∂ρθi = λ̃i and the two paths flare out following the relation

θi = λ̃i ln (r/r0) . (17)

For spatially uniform fabric tensors, Eq. (16) reduces to

dw̃
ds

= Ỹ−1 B̃Ỹ w̃ + h̃. (18)

4 Example solutions

The coupling between the characteristics makes it difficult
to derive general analytic solutions and we resort below
to insight derived from numerical solutions. However, it is
instructive to analyse first the special case when Π is diag-
onal. In this case, q̃θθ < 0, λ̃2 = −λ̃1 = √−q̃θθ and a
straightforward calculation yields

w̃1 = w̃2 = σrr (s = 0)

2
e−(q̃θθ+1)s, (19)

from which the stress is found exactly

⎛
⎝

σrr
σrθ
σθθ

⎞
⎠ =

⎛
⎝

1
0

−q̃θθ

⎞
⎠ σrr (s = 0)e−(q̃θθ+1)s (20)

An example of such a solution for σrr is shown in Fig. 2,
when a narrow Gaussian σrr stress source is applied at
(r, θ) = (r0, 0) (where s = 0 for both characteristics). This
solution exhibits several interesting features. One is the afore-
mentioned curving of the stress paths. Another is flaring out
of paths with r . A third is a broadening of each path with r . A
fourth is ‘leaking’ of stress to the region between the paths,
known as the cone of influence [22,23]. This ‘leak’ is also the
cause of attenuation of the stress along the paths. Again, in
solutions in rectangular coordinates, these phenomena can-
not occur for spatially uniform fabric tensors, which would
exhibit only straight path trajectories carrying constant stress.
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Fig. 2 Left: the theoretical solution for σrr , given in (20), it ‘propa-
gates’ into the system along two symmetric characteristics that curve
backwards. Right: an experimental observation (by Prof. J. Zhang in
Prof. R. P. Behringer’s lab) of force chains curving backwards in an

assembly of 2D photoelastic particles, when loaded by a local force in
the direction indicated by the black arrow [24]. (Image courtesy of Prof.
J. Zhang)

A fifth, and a spectacular feature, is that the stress
chains can curve backwards! This underlines the difference
between isostaticity and strain-based theories, where such
a phenomenon cannot occur. In the isostatic medium, the
’back-bending forces’ are balanced by the stress that leaks to
the cone of influence. We have checked that the back bend-
ing of the stress chains does not lead to sign change of the
stress anywhere in the entire system. This means that ten-
sile forces do not develop anywhere in the system, which
would have destabilised the structure of dry granular materi-
als. Therefore, such solutions are physically viable. Indeed,
back-bending force chains have been observed experimen-
tally [24], as can be seen in Fig. 2. We can also predict the
conditions for this phenomenon to be observed. At the point
where bending back first occurs, the tangent to the path tra-
jectory makes an angle of π/2 with the original orientation,
which we designate as the x-axis. Writing this condition as
dx/dy = 0 and converting it to polar coordinates we get that
this point corresponds to θ > π/4 on the left branch and
θ < −π/4 on the right, or θ >| π/4 |. Using then (17), we
find that the i th characteristic path starts bending back at a
critical radius, rci , satisfying

rc,i = r0e
π/

(
4λ̃i

)
; i = 1, 2. (21)

In other words, to observe stress chains bending back, the
stresses along the paths should not attenuate to invisibility
before the critical radius is reached.

For more involved fabrics, when q̃rθ �= 0, the character-
istic paths may no longer be symmetric. We plot an extreme
example of such a solution, obtained numerically for σrr
and σθθ , in Fig. 3. For this solution we used q̃rθ = 2 and
q̃θθ = −1. Note the bending back of one of the paths. The
stress in this solution also remains compressive throughout
the system.

The full richness of the solutions in cylindrical geome-
tries emerges for fabric tensors that vary spatially across the
medium. Analytic solutions for such media are difficult to
obtain and we resort to numerical solutions for insight. In
the following, we keep to narrow Gaussian stress sources
at the inner boundary. The example illustrated in Fig. 4
is of a localised perturbation to the fabric at r = 3r0:
q̃θθ = −1 − exp

[−100 (r − 3r0)
2 /r2

0

]
. The perturbation

gives rise to a clearly observed path branching. This is rem-
iniscent of the branching observed in rectangular systems
[22,23].

The effects of spatial non-uniformity are nicely isolated
and illustrated in the symmetric case and, for clear visuali-
sation of the branching effect, we solve for the fabric tensor
(q̃rr , q̃rθ , q̃θθ ) = (1, 0,−0.2 cos(5r/r0) − 0.3). The solu-
tions for σrr and σθθ , plotted in Fig. 5, show clearly the
periodic branch-like behaviour induced by the periodicity in
the medium. The stress outside the cone of influence is iden-
tically zero whilst stress leaks from the main paths into the
cone of influence at periodic intervals, where the gradient of
the fabric tensor are largest. The leakage is along secondary
characteristic paths.
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Fig. 3 The solutions σrr (left) and σθθ (right) for q̃rθ = 2 and
q̃θθ = −1. The two characteristic paths are asymmetric and one of
them bends back before reaching the outer boundary, whilst the other

does not. The stress is everywhere positive, indicating no development
of tensile forces anywhere

Fig. 4 The branching of the characteristic paths w̃1 (left) and w̃2 (right) when the fabric tensor has a local perturbation πθθ = −1 −
exp

[−100 (r − 3rin)2 /r2
0

]

5 Experimental support

Several experiments support these results. Flaring of force
chains has been observed, e.g. in figure 7 of [25] and in our
Fig. 2 [24]. Back-bending forces have also been observed,
as Fig. 2 shows. Another intriguing and potentially related
experimental observation has been reported in [26]. The

experiments consisted of shearing sand-filled Couette cells
by a very slowly rotating inner boundary and observing for-
mation of patterns of Mandala-like slip lines in the medium.
The slip lines were narrow, well defined and appeared in
pairs, flaring out almost exactly symmetrically from points
along the inner boundary (their Fig. 4). Moreover, the slip
lines pass through one another with very little interaction, if
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Fig. 5 The solutions σrr (left) and σθθ (right) for q̃rθ = 0 and a periodic q̃θθ . The characteristic paths are symmetric and leak stress into the cone
of influence at periodic intervals. Outside this cone, σrr = σrθ = σθθ = 0 identically

Fig. 6 The σrθ -chain solutions (left) for the fabric tensor measured
from Fig. 4 of [26]. For a clear comparison with the experimentally
observed Mandala-like slip lines (centre, courtesy of Bobryakov and
Revuzhenko [26]), only ten chain pairs are shown. The rotation in the

experiment breaks the left-right symmetry and gives slight preference to
one family of characteristics over the other (right). The chains geome-
tries compare well to the experiment despite the rough estimate from
their figure

at all. The pattern and shapes of these slip lines are identical
to the stress chain solutions derived here and it is tempt-
ing to relate the two. Our interpretation of their observations
is that, on the verge of slipping, their medium is almost
perfectly isostatic and the low shear rate makes it possible
for the medium to remain very close to this state, making
possible the appearance of our solutions. The slow shear
generates distinct stress sources along the inner cylinder,
which give rise to characteristic paths in the material, fol-
lowing the analysis presented here. The slip lines then form
at the zones of highest shear stress. The slow rotation of the
inner axis breaks somewhat the left-right symmetry, which

is why one characteristic family is more evident than the
other.

We can further use their Fig. 4 and data to obtain infor-
mation about the structural constitutive properties of the
granular medium in their experiments. Assuming that the
structure can be approximated by a spatially uniform fabric
tensor, the fact that there is very little interaction between the
slip lines suggests that πrθ = 0. This also accounts for the
near-symmetry of the slip line pairs. We can also estimate,
from the figure and the reported data, an approximate rela-
tion between the flaring out angle and radius along every slip
line. Using this estimate in our Eq. (17) we deduce that their
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effective fabric tensor satisfies λ̃1,2 ≈ ± π
6 ln 2.5 and hence

that q̃θθ = −λ̃2
i = −0.33 ± 0.06, where the error stems

from the uncertainty of measurements from their Fig. 4. In
Fig. 6, we plot the shear stress chains, σrθ , for this fabric
tensor. For clarity, we show only ten pairs, as the experimen-
tally produced twenty plus pairs would clutter the figure. We
also plot the left hand side characteristic paths family on its
own for clear comparison. The strong similarity between the
experimental and theoretically derived chain geometries sup-
ports both our analysis, as well as our interpretation of their
observations.

It should be noted, however, that this Mandala-like pat-
tern can only arise when the fabric tensor is very close to
uniform across the system and πrθ = 0. It is very likely that
this is the case in the experiment because of the careful ini-
tial preparation of the material and the very slow shear rate.
More general fabric tensors are expected to be more disor-
dered, having have local gradients, which would give rise to
secondary disordered stress chains.

6 Conclusion and discussion

To conclude, we analysed the isostaticity stress field equa-
tions in polar coordinates. We derived the equivalence
relation between the constitutive fabric tensors in cartesian
and polar coordinates and the constraint that the components
of the latter must satisfy for the equations to be hyperbolic
and yield stress chain solutions. The stress equations were
analysed and an explicit formula has been obtained for the
flaring out of the stress chains and their broadening away
from the inner boundary. This relation was then used to show
that stress chains can bend back and exert force components
in a direction opposite to the original loading! This striking
phenomenon, which is impossible in strain-based theories,
such as elasticity, is a fingerprint of the arching effect. This
phenomenon is not dissimilar to chains of dominos, which
can be made to fall, and thus have momentum, in opposite
direction to the initial domino.

We emphasise that this analysis is significant beyond the
relevance to cylindrical geometries and Couette cells. It is
often the case that an external load is localised almost at the
particle level, say due to grains being pressed by the bound-
aries more than their neighbours. Since the size of the system
is normally much larger than the localised length scale, the
stress field around such a source has locally unavoidably a
cylindrical symmetry. Consequently, the stress field near a
source is better described by Eqs. (4)–(6) then by (1)–(3).
This suggests that some of the effects we derived here may
also be observed in experiments other than in Couette cells.

It is interesting that the flaring out phenomenon does not
arise in most of the solutions in the literature, where rectan-

gular coordinates were used and straight stress chains were
found for uniform fabric tensors. We believe that the reason
for the apparent discrepancy between those and the solutions
studied here is that we constrain our fabric tensors to have a
negative determinant for all azimuthal angles θ , a constraint
that is missing from those initial studies. Moreover, in view
of the above discussion, not imposing this constraint leads
to regions in the plane where the fabric tensors, used in the
literature, may have positive determinants, as shown by our
Eq. (8). In reality, this means that stress chains may disperse
when incident on a region with a positive determinant of the
fabric tensor, where the equations become locally elliptic.

Numerical solutions were then derived for several uniform
fabric tensors in annuli, supporting the analytical results and
demonstrating that stress chains indeed flare out, broaden and
bend back. These solutions also demonstrated the further rich
behaviour in cylindrical systems: chains leak stress into the
region between the chain pairs - the cone of influence. That
these phenomena occur even for perfectly uniform media,
when ∇πi j = 0, is in stark contrast with solutions in rectan-
gular geometries, where such fabric tensors can only give rise
to constant stress along straight stress paths and zero stress
elsewhere.

We then studied several numerical solutions for spatially
varying media and showed that large gradients in the local
fabric tensor lead to stress chain branching, a phenomenon
seen also in rectangular geometries [22,23]. This branching
is in effect a strong ‘leak’ from a localised region on a specific
path, whose trajectory is along a conjugate secondary char-
acteristic path into the cone of influence. Effects of general
spatially varying structures were also illustrated by solving
for a fabric tensor with a component periodic in the azimuthal
angle. The periodicity in the fabric induces periodic leak-
ing stresses from the main paths, again via secondary paths
into the cone of influence. A similar phenomenon would be
observed for periodicity in the r -direction.

Finally, we pointed out experimental observations that not
only support our results but also can be explained afresh in
view of them. To the best of our knowledge, back-bending
forces, although observed in experiments, have been neither
discussed nor studied in the literature. It would be interesting
to study this phenomenon in more detail in light of the predic-
tions made here. Our results also suggest a new quantitative
interpretation of the shearing experiment in [26].

This work can be extended in a number of directions.
Theoretically, the next natural step is to obtain solutions for
nonuniform fabric tensors and test how the statistics of their
local gradients affect the statistics of the main stress chains,
as well as those of the secondary and tertiary branching ones.
Following the discussion above, concerning the differences
between the solutions in rectangular and polar coordinates,
another direction to explore is a more detailed understanding
of the behaviour of stress chains for the fabric tensors, conjec-
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tured in the literature for rectangular coordinates, once used
as input for our equations here. In particular, it would be inter-
esting to observe how straight stress chains [11–14,22,23]
disperse upon entering an elliptic region of the fabric tensor.
Another natural extension is to three dimensional systems,
but this extension has to wait until a proper such theory is
constructed even for rectangular coordinates. These theoret-
ical directions are being taken currently in our group. We are
also looking forward to real and numerical experiments to test
our theory, in particular of very slow shear in Couette cells.
For example, related simulations [27] found an inclination of
the principal stress direction relative to the radial direction,
which initially increases with radius and then saturates to a
constant of about π/4. Our theory predicts that this inclina-
tion, which is the direction of the stress chain, would increase
continuously. Those experiments, while relevant, are incon-
clusive as a test. Firstly, the increase found there is over a
2-particles thick shear band, which cannot be considered a
continuum. Secondly, their observed saturation to a constant
angle is probably due to the increasing connectivity away
from the shear band, which takes the medium away from the
isostatic state, where the theory is valid. Thirdly, our theory
predicts two such principal stresses emanating from the inner
cylinder, while they observe only one. This could also be a
result of the broken symmetry by the shear. Nevertheless, in
view of our results, it would be useful to modify such experi-
ments accordingly to provide a rigorous test of our solutions,
e.g. by generating wider isostatic-like shear bands.
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