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We present a theoretical framework to generate and statistically characterize the microstructure of
coarse-grained random two-phase heterogeneous materials. The structures are produced by convolving
the intensity function f(x) of a source image with a kernel K(x) to yield a new smoothed intensity F(x)
and then using the coarse-grained image which results from taking a cut through the surface F(x) at F,
(“islands within lakes”). By varying F, and the properties of the kernel K, one can generate a wide class
of intricate microstructures. We provide a general means, which heretofore had been lacking, of
representing and computing the correlation functions that statistically characterize samples of arbitrary
size of such coarse-grained models. To illustrate our formalism we obtain results for specific examples of
the source intensity f(x) and the kernel K. We also show how one can use this procedure to generate
media consisting of distinct particles in a matrix of another material. The applicability of this study to
bulk properties of heterogeneous materials and to image analysis in general is discussed.

PACS number(s): 81.35.+k, 05.40.+j, 42.30.—d

I. INTRODUCTION

Heterogeneous materials abound in nature and in
man-made situations. Examples include ceramic compos-
ites, geologic media, polymer blends, foams, colloidal
dispersions, and animal and plant tissue, to mention but a
few. The microstructures of these materials are typically
quite complex in that they are characterized by some de-
gree of randomness and possess intricate topologies. The
macroscopic properties of random heterogeneous materi-
als are generally sensitive to the details of the microstruc-
ture [1-5]. Thus an important fundamental aspect of
theoretically understanding the macroscopic behavior of
such media is to be able to generate and characterize suit-
able model microstructures.

Over the last decade considerable effort has been ex-
pended in characterizing the microstructure of media
composed of random distributions of finite-sized particles
[5]. By allowing the particles to overlap in varying de-
grees and possess arbitrary shape and size, particle-based
models can be made to be quite versatile. For example,
such particle-based models can represent both unconsoli-
dated media (e.g., beds of particles) and consolidated
media (e.g., sintered materials).

Following the work of Weinrib and Halperin [6],
Crossley, Schwartz, and Banavar [7] proposed recently a
class of models of porous media based on the smoothing
of random white-noise images using either Gaussian or
Laplacian-Gaussian kernels. The models consist of con-
volving a source intensity function f(x) with a kernel
K (x) to yield a new function F(x), where the coarse-
grained image is a cut through the surface F(x) at F\,.
This generates a two-phase composite medium. Using
computer simulations, they showed that with the proper
choice of smoothing parameters, models of this type give
a reasonable image representation of Vycor glass and
crystalline dolomites. Image analysis techniques are
currently being used to study properties of cementatious
materials [8].
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The morphology of the coarse-grained image depends
on the intensity f (x), the kernel K, and the cutoff value
F,. By varying these quantities, coarse-grained models
can be made to represent the microstructure of a wide
class of heterogeneous materials. Despite the wide range
of applicability of this technique, there is presently no
systematic theoretical analysis of the statistical charac-
teristics of the corresponding microstructures and their
bulk properties.

The purpose of the present paper is to provide a
theoretical framework to generate and statistically
characterize the microstructure of such models and their
generalizations. In particular, we provide a general for-
malism to represent and compute correlation functions
that statistically characterize the microstructure of
finite-sized samples of the models. We apply the formal-
ism to a number of different source intensities and ker-
nels. One of our aims here is ultimately to be able to
study the effect of varying the above quantities on the
morphology and the macroscopic behavior of the materi-
al. Some of the expressions obtained here for the correla-
tion functions arise in rigorous relations for the effective
conductivity [1,3,5] and elastic moduli [2,5] of composite
materials, rate constant of diffusion between traps [5],
and the fluid permeability of porous media [5]. Thus
knowledge of such information will enable one to com-
pute all these quantities for this rich class of morpholo-
gies. We also show that models of particle-based materi-
als may be viewed as special cases of coarse-grained mod-
els for certain f, K, and F,.

The outline of this paper is as follows. In Sec. II we
formulate the basic problem. In Sec. III we analyze the
statistical properties of the smoothed image. We illus-
trate our results by explicitly analyzing two particular ex-
amples: Gaussian and binary intensities of the source im-
age. In Sec. IV we analyze the statistical correlation
functions associated with the coarse-grained image that
result after cutting the surface F(x) at F,. We show that
particulate systems that are generated by particular
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choices of the parameters of the coarse-graining pro-
cedure can be made to reproduce almost exactly a Pois-
son distribution of overlapping monodisperse particles
within a matrix. Some of our results for Gaussian kernels
are demonstrated in arbitrary dimensions. Finally, we
summarize our results and briefly discuss them in Sec. V.

II. PROBLEM FORMULATION

We start from an original system of N points, distribut-
ed in some fashion throughout a d-dimensional volume.
This system we term the source, and we will refer to the
points as source points. Let x,, (n =1,2,...,N) be the po-
sition vector of the nth point. With each point we associ-
ate a scalar f, that represents some measurable quantity
of interest, which we henceforth call the intensity. For
example, the points can represent a set of stellar objects
that one would like to observe and analyze, and f, would
be the intensity of radiation emitted by the nth star. As
another example, the points can represent the centers of
areas in the source system, with electrical conductivity of
magnitude f,. In principle, the points can either fill the
source uniformly or they can be randomly distributed
within the volume of the source. Thus we have a spatial
distribution of such source points, for which we now
define a global measure (intensity) f (x) at position x as

N
f(x)=73 f,8(x—x,), (2.1)

n=1

where 6(x—x,,) indicates a d-dimensional § function. Let
us term f (x) the source function.

Having defined the source and the source function, we
wish now to specify a procedure that maps the source
onto an image that is a coarse-grained replica of the
source. A general way to define such a procedure would
be

F(x,{C))= [ f(x)K(x—x,{C})d% . 2.2)
In the language of image science, F (x) is the distribution
of the intensity of the smoothed image. The kernel K is
also called the filtering function, the filter, and the point
spreading function, in the language of image synthesis.
For simplicity, we assume that K (x, { C}) is a scalar func-
tion that is even when x— —x. Therefore, one of the
effects of this kernel is to smear the pointlike intensities
of the point sources. The kernel can also be made to re-
scale the size of the system, as well as translate it, by
K(x)=K[A +x/w]. Generally, the kernel can depend
on a set of M parameters {C}, of which 4 and w are only
two elements. Furthermore, in principle, this set can ei-
ther consist of predetermined elements, or these parame-
ters can be randomly chosen from a respective set of
given distributions.

Now there are several questions that one can address.

(i) Suppose K is predetermined, which includes
knowledge of its functional form as well as knowledge of
the exact values of the elements of {C}. What is the in-
terdependence between the statistics of the distribution of
the intensities of the source f and the statistics of the in-
tensity of the image F? This issue can be important when
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measurements are inaccessible on the source (image) and
accessible on the image (source). For example, suppose
the source points represent regions of high conductivity
(high intensity) within a poorly conducting matrix (dark
background). We can then interpret F as the spatial dis-
tribution of the conductivity within the image and mea-
sure the effective bulk conductivity of the image. This
effective conductivity has a distribution, and the question
is how can this distribution be made to tell us about the
distribution of the effective conductivity of the source?

(ii) Suppose the process by which the source was creat-
ed is unknown. Can we infer on the statistics of this pro-
cess from the statistics of F? An example where such a
question is relevant would be in astrophysics, where the
stochastic process, by which stellar objects (galaxies,
stars, etc.) were formed, is of much interest. In this case
we view the system of bright objects through some ap-
paratus, which already creates an image of the source
data. This image can be transformed to give birth to a
more coarse-grained offspring, and so on and so forth.
The goal then is to learn about the stochastic dynamical
process that created these objects from the statistics of
the images.

(iii) The traditional image synthesis problem: Assume
that one is interested in a particular source configuration,
namely, a source generated by a specific configuration of
the intensities. Also suppose that noise affects the image
through the fluctuations of the elements of the set {C}.
The question is, to what accuracy can one retrieve the
particular source configuration after it has been distorted
by the noise?

(iv) The variability of the elements of {C} need not be
interpreted as interfering with measurements. There are
many situations where the problem is to find the best ker-
nel for a given purpose. In such cases we can determine
the functional form of the kernel by tuning its parame-
ters. We can use this variability to optimize the values of
these parameters subject to constraints that we can im-
pose. The way to carry out this optimization is to ana-
lyze the relationship between the statistics of the source
and the statistics of the image, carrying along the un-
determined parameters (the elements of C), and then op-
timize them by constraining either the image or the
source.

These issues span too broad a scope to cover in one pa-
per and we cannot address them all here. Rather, we
concentrate on the first problem. Some of the other
directions are currently under investigation, and further
results will be reported in forthcoming papers. Neverthe-
less, the formulation and the analysis presented here are
also intended to lay the foundations and pave the way for
further study regarding these other aspects of coarse-
graining.

III. ANALYSIS: THE SMOOTHED IMAGE

In the following we grid-discretize the source, by asso-
ciating each source point with a d-dimensional vector,
whose components are integral multiples of the grid unit
separation a (the mesh size). Thus the index n becomes a
vectorial quantity n, and the positions of the source
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points are X, =(n,n,,...,n;)a. We choose to treat
discretized images (i.e., n; runs over all integer values up
to the size of the system) because, in practice, one works
with a digital-based image. Our analysis requires only
simple modifications to apply to continuum images as
well. Note that by assuming that the source points
homogeneously fill the volume of the source system we
have not lost the generality of a random distribution. We
can always assign a finite probability for f, to be zero
and associate the occurrence of f, =0 with nonexistence
of the nth source point or with the background intensity.
So by introducing randomness only in f, we have obviat-
ed the need to specify the distribution of the locations of
the source points.

In the most general case the intensities can be chosen
from N different probability densities (PD)’s, p,(f,).
These PD’s can be either correlated or uncorrelated. We
choose to focus here on the case where there is no corre-
lation between the p,’s. Namely, p,df, is the probability
of finding the intensity of the nth point between a value
of f, and a value of f,+df,. Before continuing, let us
define the characteristic function (CF) of the nth PD,

buthk)= [ " Prp, (10, . (3.1)
The value of F(x) can be written in the form
N
F(x)=3 f,K(x—x,) . (3.2)

n=1

For brevity, we drop the explicit dependence on {C}, and
for the purpose of the present study, we assume that its
elements are completely specified.

Since Eq. (3.2) is written in a convolution form, the
Fourier transform of F is simply

Ho)=f(o)H (o), (3.3)

which is the main tool used presently in the field of image
analysis. However, for our purpose here, whether we
study F or F does not change the level of difficulty, and
we find it more convenient to discuss F. It is simple to
show that if the PD of Fis P(F) then the CF of P(F) is

® ()= T 6, (KK, 1,

n=1

(3.4

where K, =K (x—x,). We are now in a position to study
some of the statistical properties of F. In the following
we will denote by (A(x)>=fA(x)[ 1Y, p.(f)df ]
an ensemble average over the distribution of intensities
and by Z=(1/V)fA (x)d“x a volume average over x.
These two averages of F are

(F)=3 (f,)K,

and

where V is the volume of the source. Note that carrying
both averages out on F results in a sum of decoupled
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averages over the intensities and the volume. This state-
ment is also true for any power of F, as well as for its
higher-order correlations. Let us consider the intensity-
intensity___correlation  function of the image
C,(y)=F (x)F(x+y). Its expectation value over all real-
izations of the intensity function can be calculated in
terms of correlations between intensities, f,, and spatial
correlations, D, ,, in the source

<C2(y))=2 <fnfm >Dn,m(y) ’

n,m

(3.5)

where
D, ()= [d%K (x—x,)K (x+y—x,,) .

Note that when the intensities are uncorrelated, the
intensity-intensity correlation function in the source
decomposes into a product of the averages, {f,){f,, ),
while the diagonal terms n =m give the second moments
of f,, (f 3). If, in addition, all the intensities are chosen
from an identical distribution, namely, p, =p;Vn, the ex-
pectation value of intensity-intensity correlation function
simplifies to

(C,yN=(f ) 3 DN +{f2) 3D, . (y).

n#m

(3.6)

It is easy to see that higher-order correlations decompose
similarly into a product of spatial correlations involving
only the kernel function at different locations and corre-
lations among intensities of different source points. In
what follows, we carry out explicit analyses for two par-
ticular examples.

A. Gaussian intensities

Consider first the case when the intensities are chosen
randomly from N Gaussian distributions. Namely,

pu(fn)=A(y,,0,) expl—(f,—7,)*/(207)] ,
{0<f, <1}, 3.7
where the normalization constant A4 is
Va/m _
o [PU1—y,)/ (V28 N+ Py, /V20,))]’

Ay ,,0,)=

and ®(x)= ff)‘exp( —x2)dx. The CF of this distribution
is

¢, (k,)=(A(y,,0,)/A(€,,0,))

X exp[—oi(k,—iy,/02)?—y2/202], (3.8
where €, =y, +io2k,. We want to find the probability
density P (F) by using (3.4). For simplicity we assume
that 0, << min{1,y,}, although this assumption is not
essential in any way to the derivations in this work. The
simplification is that ®~1 in the above expressions. The

characteristic function of P is
Dp(k)=exp[ —T2/(23%)—(22/2)(k —iT/2*)?], (3.9

where
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r=3v,K, 2*=3o0iK}. (3.10)
n n

It is simple to carry out the inverse transform to find the

PD of F. Specifically, we get

P(F)=(V2r3) 'exp[ —(F —T)?/(23%)],  (3.11)

identifying I" and = as the mean and the width of the dis-
tribution of F. Note that this result is general for any
choice of kernel K. For example, let us consider Gauss-
ian kernels, which are very widely used in the literature
of image analysis,

(K (x)=exp[—|x|*/&?],

where o is a scaling factor. In this case the series in
(3.10) can be summed, and the mean of F and its variance
over the intensities can be found analytically. In one di-
mension this calculation gives for these parameters

I'=(w/a)0y(—xm/a, exp[ —(ww/a)*])y ,

_ _ (3.12)
3?2=(w/V2a)0,( —xm/a, exp[ — (7w /V2a)*])o? .

For the sake of convenience, we have assumed in these
expressions that all the intensities are chosen from the
same distribution, characterized by y and o. The func-
tion 05 is the elliptic theta function [9], and a is the mesh
size that enters through x=na. In a higher dimension d,
each point is characterized by d indices, n,n,,...,n .
The kernel can then be written as
d
K(x)= [J exp[—(x™—x{")/0?], (3.13)
m=1

where x ™ and x{™ are the components of x and x,, in
the m direction. To find now the average I' and the
width = of the PD of F, we need to sum then over all d

indices, which is straightforward in the Gaussian case
and leads to

d N
Fd: H 2 exp[—(x('")—x,(,'"))z/a)z]
m=1ln=1
4 g
= I1 6s5(—x""m/a, exp[ —(mw/a)]) ,

m =1

wy
a

d _
32 =(wo?/V2a) 0,(—x'"™ 7 /a, exp] — (7w /V 2a)?)).
d

m=1

(3.14)

B. Binary intensities

As another example consider a source consisting of a
random set of white and black pixels. Such a color distri-
bution can be described in our language with the set of
intensities chosen from the following PD:

p(f)=[8(f,—1D)+8(f,+1)]/2,

with the understanding that f, =1 (—1) corresponds to a
white (black) pixel. This corresponds to having, on aver-
age, a 50%-50% mixture of white and black pixels. We
are again assuming no spatial correlations between

(3.15)
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choices of colors at different positions. The CF of p, is
¢,(k, )= cos(k, ), which gives for the CF of P (F)

®(k)=]]J cos[kK, ] . (3.16)
This CF can be rewritten in the form
N
®(k)=2""3 exp |ik 3 s5,K, ] , 3.17)

n=1

{sn}

where the summation in the exponential is carried out
over all possible permutations of s, ==x1. It is interesting
to note that this form resembles very much a statistical-
mechanical trace over the partition function of a system
of classical Ising spins (i.e., spins that can attain only two
states, s, =*1) in a position-dependent external magnetic
field whose magnitude is K, [10]. The inverse transform
is easy to carry out, and it yields

N
F—-3 s5,K,

n=1

PF=2""3%5% , (3.18)

{54}

where the first summation is again over al] possible per-
mutations of {s,}. This PD can be immediately checked
to be normalized; since each s, can have two values that
are independent of the rest, there are 2V possibilities of
different s, configurations. An integration over F will
give one for each term in the sum, as long as the argu-
ment of the § function vanishes within the range of in-
tegration. It follows that the total value integrates to uni-
ty. It is not difficult to generalize this distribution to the
case where the intensities can assume a discrete number
of color values between black and white, namely, when
shades of grey can also occur. From Eq. (3.18) we im-
mediately note that the expectation value of F for this
distribution is zero. This is so because in the summation
over s, for each configuration {s,} there is an equivalent
configuration with each s, — —s, that occurs with exact-
ly the same probability. Thus P(F) is symmetrical and
its mean vanishes. This value corresponds to an in-
between grey, which is exactly what we would expect in-
tuitively from a 50%-50% random distribution of black
and white regions to display. This example can also be
generalized to the case where the black and white pixels
do not occur with the same probability. Namely, when
Eq. (3.15) is written in the form

P f)=p6(f,—1)+(1—p)o(f,+1).

The second moment of the PD [Eq. (3.18)] is also sim-
ple to calculate

(3.19)

N

2
2 snKn] .

n=1

22=2—N 2

{sn}

(3.20)

Note that the above quantities depend on the spatial
coordinates x through the kernels K,,. A volume integra-
tion operates then only on the kernels, and global volume
averages are therefore easy to analyze in terms of the in-
dividual volume averages of K,. This simplification
holds for the spatial correlations of F as well, in the sense
that these correlations can be expressed in terms of sim-
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ple sums over correlations between individual K, func-
tions similar to D, ,, (y) above.

IV. ANALYSIS: PLANAR CUTS THROUGH F(x)

A. Formulation

We now turn to study the morphological structure of a
cut through the surface F at a level F,. Such a cut
defines (d —1)-dimensional contours where F intersects
the cutting hyperplane. These contours divide the hyper-
plane into regions that are considered within the con-
tours and complementary external regions. This is the
well-known ‘‘islands within lakes” picture [11]. For ex-
ample, in d =1, F(x)=F(x), which can be cut by a
straight line at Fy. The intersections of F(x) with this
line form a set of one-dimensional ““‘chords” that lie in the
shade of F, namely, where F(x)>F,. An example is
shown in Fig. 1l(a). In d =2, F(x) defines a two-
dimensional surface, which we can cut by a two-
dimensional plane at height F;. The intersection of this
plane with F defines now a set of one-dimensional con-
tours enclosing two-dimensional areas where F(x)> F,.
Such a cut is illustrated in Fig. 1(b). For simplicity, and
to demonstrate our results in the clearest way, we choose
to focus here on the one-dimensional case, which allows
for simple exact analysis. In future work we will report
results in higher dimensions.

B. Correlation functions

In the one-dimensional case, a cut at F yields a set of
intersection points {;, which we order in an increasing

ﬂ (a)

X

FIG. 1. Examples of a binary phase mixture formed by cuts
of F(x): (a) Set of points §,(n =1,2,...,2N) defined by cutting
F(x) with a line at F,; (b) Set of line contours defined by cutting
F(x,y) with a two-dimensional plane at F.
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value. Namely, i =1 corresponds to the leftmost inter-
section that is also of lowest value of x, and so on to the
rightmost point, §;. Since we expect F(x) to decay as the
boundary of the system is approached, we can safely as-
sume that F(x) increases with increasing x at ;. Thus
the intersections with odd and even indices define left and
right boundaries of a chord, respectively. We are in-
terested here in the correlation functions associated with
the chord phase.

We first calculate the expectation value of the volume
fraction of these chords ¢q. For a given configuration of
the source (whose volume here is assumed to be 2L)

1 L
S, =Ef_L6(F —Fy)dx , 4.1)
where O(x) is the step function defined to be 1 for x >0
and zero for x <0. Therefore the expectation value for
the volume fraction of chords is

(s,)=[P(F)S\dF= [ "P(F)dF . 4.2)
Not surprisingly, this is exactly the probability of finding
values of F that are larger than F,. It is clear that this re-
sult is not restricted to d =1 and is applicable to any
dimensionality. The cumulative distribution of P(F)
should be very easy to calculate from the analysis given
in the previous section, and therefore the volume fraction
of the shaded areas is straightforward to obtain for a
given system.

Next we note that all higher-order correlations within
the chord phase can be written in the form

Sy(Y 1Yo sVn—1)

1 n—1
=ZIG(F(x)—F0) 1 ©(F(x +y,)—Fg)dx .

j=1

(4.3)

Observe that O(F (x)—F) can be written in terms of the
auxiliary function I (x) as follows:

O(F(x)—Fy))=I(x)=T3 O(R,—|x —r]]), (4.4)
i=1
where
_ (&5 —82i—1) _ (&5 +82i—1)
Ri=—mm, rn=—m"m7"""——,
2 2

and 2s is the total number of intersection points [12].
Here 2R; and r; are the length and the centroid position
of the ith chord, respectively. By rewriting the correla-
tion function (4.3) as

n—1

1
Sn(yl’--wyn—l)_ifl(x)jglI(x +y;dx

(4.5)

this formulation permits a simplification as follows: Not-
ing that the set {§;} is nothing but the zeros of the func-
tion F—F,, we immediately see that the zeros of
F(x +y;)—F, are {n;=;—y;}. Substituting this into
Eq. (4.3) facilitates the calculation of the integral. The
only computational difficulty lies now in the need to cal-
culate the roots of F(x)—F,. Once this is done one can
compute the R; and r;, construct the product of the func-
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tions I in the integral, and calculate very easily the corre-
lation functions to any order. Since there are many sim-
ple algorithms to find the zeros of a one-dimensional
function, this method simplifies significantly the calcula-
tion of these correlation functions. Moreover, it is possi-
ble to find a polynomial, whose roots coincide with the
roots of the function F, as shown in the Appendix, and
use it to find the set {§;}.

We illustrate this method by considering the details of
obtaining the two-point correlation function within the
chord phase. For a particular configuration of source
points, the two-point function according to Eq. (4.4) and
(4.5) is given by

_1 3 e —
S;0=57 3 JOR,—Ix—r

Q=1
XO(R;—|x +y —r;ldx .

The above integrand consists of regions of zeros and
ones. Figure 2 shows a particular example of I(x) and
I(x —y) along with the overlapping regions that are the
only regions that contribute to the integral. A simple in-
spection of Fig. 2 will convince the reader that this
volume is invariant under y — —y, indicating that S,(y)
is an even function of y. We therefore consider only
y 20. With the help of Fig. 2 it is not difficult to see that
summing over these regions yields

1 & 1 ;
S =— mt (p)+ — Int. , 4.6
2(y) 3L iglvz,,,(y) Y3 i,j2=1U2’”(y) (4.6)
(ij)
where the intersection volume
_ 0, ly—r;l>R;+R,;
vy ()= 12R,, ]y—rij|<Rj—R,-

Rj+R,-—|y —rijls
R,—R;= ly —r,-j| =R;*R;,
where r;;=|r; —r,|, and we have assumed, without loss of
generality, that R;>R,. This result can now be easily
generalized to higher-order correlation functions S,. The

summation in that case would involve n indices, and the
terms would have a form similar to (4.6), but with all pos-

(a)

o

I(x-y)

(

FIG. 2. Contribution to the two-point correlation function in
the chord phase in one dimension: (a) Auxiliary function I (x)
defined by Eq. (4.4) is unity in the chord phase and zero other-
wise. (b) Shifted auxiliary function I(x —y). The overlap re-
gion that contributes to .S, is shaded.
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sible permutations of the roots and the distances y;’s. To
find the expectation value of S,(y) over all possible reali-
zations with 2, zeros, all we now need to do is weigh the
above expression by the probabilities of occurrences of
the various roots and integrate over the densities. This
process is somewhat involved because for each realization
of F [with PD P (F) in functional space F] we have a dis-
tinct set {£}, but notice that the first term is independent
of the centroidal positions 7;.

C. Illustrative example: Binary intensity
and distribution of particles

To discuss a specific example for the correlation func-
tion S, let us consider a source where the PD of f, is
given for all f, by

p(f)=(1—p)8(f,)+pd(f,—1).

This PD indicates that each site has a probability p (or
1—p) to have intensity f, =1 (or 0). In a given realiza-
tion, and for a large number of points, we expect, on the
average, a fraction p of the source points to emit at inten-
sity f, =1, while the rest of the points with zero intensity
are considered as the background. The probability of
finding exactly s points at positions x;,x,,...,X, in a sin-
gle realization is p%(1—p)¥ ~%. The image Fis

F(x)= 3

neTl(p)

4.7)

K(x—x,), (4.8)

where I'(p) is the set of all points in the source for which
f.=1. We assume that K (x) is a function that is sym-
metric about x =0, where it also takes on its maximum,
and that it decays monotonically away from x =0. The
assumption that K is even in its argument is made for
simplicity and by no means poses a restriction; the fol-
lowing example can be easily discussed in the absence of
this simplification. Since the source points are randomly
distributed within the source volume V, the typical dis-
tance between two neighboring source points in a realiza-
tion with s points is A=[V /s]1/4.

We now discuss two case studies: one of a low concen-
tration of source points and the other of high concentra-
tion. Let Fy=K(0)(1—38), where 8§ <<1. In this case
only the very top of each smeared point is cut and the ini-
tial source points transform into small regions (rods in
d =1, circles in d =2, etc.). The locations of these re-
gions are centered predominantly around the locations of
the initial source points, which were randomly distribut-
ed. As we lower the level F; at which the image is cut,
the regions grow until they start to overlap. By lowering
the F, plane we then simply increase the radii of the ran-
domly placed circles (d =2) or rods (d =1) and let them
overlap eventually. When the density of the system is
such that interference between K (x —x,,) and K (x —x,,)
for n*m is negligible, we can solve approximately for
the locations of the zeros for a given value of F, by
finding the value of the radii of the rods from the equa-
tion

K(R)=F, . 4.9)



4498

In d =1 this yields two roots for a monotonically de-
creasing kernel. If there is no overlap between rods it is
simple to express the location of zeros in terms of the lo-
cations of the source points

Sric1=x;,—R, &;=x;+R,

where the indexing of the positions i increases with the
value of x; from left to right. Thus, using the definitions
immediately below (4.4), we have

=X

R,=R,

Having found the zeros, we can now substitute them in
expressions (4.5) or (4.4) to find the correlation functions
in terms of the location of the initial source points.

It is clear that the simplification in this dilute regime is
effected by the correspondence to values of F, that are
close to K (0). In this case the volume fraction of a par-
ticular s-point realization is §; =2Rs/2L. An ensemble
average over all possible values of s would yield (S, ) =~p,
as expected. In the dilute regime ¢S, ) is very close to p.

The two-point correlation function within the rod
phase can be found from (4.6) exactly to order s /2L as

S,(p)==pint (y) .

Evz,ii (4.10)

Note that here viz‘j},-( ») has a very simple interpretation:
it is the intersection volume of two rods of length 2R
whose centroids are separated by a distance y. In the lim-
it s— o, L — o0 such that s /2L remains constant, (4.10)
recovers the well established result for a dilute distribu-
tion of monodisperse rods [5,13]. To carry out an ensem-
ble average of S,(y) we need to weigh this expression by
the probability of finding this particular configuration
[=pS(1—p)¥ 5], sum over all possible values of S, with s
points, and then sum over s. However, if we are just in-
terested in the subset of all configurations with s points,
we have to sum only over contributions from this partial
ensemble of sources. The total number of such
configurations is (¥)p*(1—p)"¥ ™%, and so the probability
of finding a system with s source points among all possi-
ble systems is Q,=(M)p5(1—p)N 27N, Since the loca-
tions of the source points are independent we can assign
for each point x, a uniform probability of being found in
the volume of the source, 1/2L. It is straightforward to
integrate (4.6) over all probabilities of the x,’s and obtain
the expectation value |Sz( y)ls over this partial ensemble.
To find the ensemble average over all systems, permitting
any number of point sources, all we need to do is multiply
[S,(»)|; by Q, and sum over s. This is a simple exercise
given that |S,(y)|, can be related to the second derivative
of a binomial sum with respect to p. We emphasize that
the calculation in the nonoverlapping regime is straight-
forward to generalize to higher dimensions.

Turning to high concentrations of source points we
now claim that we can choose F, such that the resulting
chord distribution that is generated is almost identical to
the distribution of monodisperse rods placed randomly
on a segment line. We demonstrate this by computing
the characteristic function 7 (x) and the two-point corre-
lation function S,(y) for both models. Initially N =500
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points are randomly distributed along a line segment of
length 2L. The distribution is convoluted according to
the procedure outlined above with a Gaussian kernel of
the form

K (x)= exp[ —|x|*/0?] .

The width of the kernel w=2L /500 and F,=0.82 are
chosen such that the volume fraction of the chord phase
is definitely not dilute, i.e., p =~0.634. We compute F(x)
for exactly one realization and plot a representative sec-
tion of it in Fig. 3. In Fig. 4 we show the corresponding
two-point correlation function.

Employing now the same random distribution of 500
source points we place rods of equal size centered on each
such point. The size of the rod is chosen to give the same
volume fraction of the resulting chord (rod) phase,
p=0.634. The characteristic function and the two-point
correlation function are similarly computed and shown in
Figs. 3 and 4. By comparing the computed plots one can
immediately observe that the features of the two systems
are almost identical. It can be seen by inspecting Fig. 3
that the distributions of the chord phases of the two sys-
tems almost coincide. The deviation of the models is only
at the very short scale of the size of a rod. These devia-
tions are due to very small dustlike rods that the second
method generates, which are not generated by the cut in
F. Another demonstration of the close equivalence be-
tween the systems can be seen in Fig. 4 where the plots of
S,(y) follow each other closely all the way up to scales of
the size of the system. The small deviation of the plots in
the short-scale regime can be traced exactly to the above
difference. In the long-range scale both plots of .S, (y) ex-
hibit fluctuations that reflect the fact that these are single
finite realizations. An ensemble average over such reali-
zations will eliminate these fluctuations.
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FIG. 3. One-dimensional random system: A cut through F
at F;=0.82 and the equivalent characteristic function (normal-
ized to height 0.82 fo;' convenience) of Poisson distributed rods.
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FIG. 4. Two-point correlation function S,(y) in the chord
phase scaled by the chord volume fraction p for (a) the theoreti-
cal result for an infinite ensemble, (b) a cut in F, and (c) a Pois-
son distribution of rods.

Such Poisson distribution of rods on a line is a very
well studied problem and therefore enjoys well known
theoretical results. In particular the exact form of S,(y)
is known for an infinite ensemble of such rod distribu-
tions

s(2R +y)
2L

2p — 1+ exp , Y<2R

S,(y)=
p% y>2R,

and we have included it in Fig. 4. The theoretical value
of S,(y)/p agrees extremely well with both our computed
plots, given the fact that we have used only one system.
It is evident that the particular choice of the Gaussian
kernel is irrelevant to this result, and any symmetrical
kernel that decays on a similar scale as the Gaussian ker-
nel would produce the same equivalence. We have thus
shown that the paradigm of the Poisson distribution of
monodisperse rods, even in the dense regime, can be gen-
erated by our technique for a particular choice of w and
F,. Note that this result is stronger than simply claiming
that the statistics of the models are the same. Rather, by
using only one realization we have shown that the details
of the two generated systems are almost identical.

V. CONCLUDING REMARKS

We have presented a theoretical framework to study a
coarse-graining transformation from a source to a
smoothed image. We have analyzed the relations be-
tween the statistical properties of the source intensity and
those of the image. In particular, we have expressed the
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intensity-intensity correlation functions of the image in
terms of the source statistics. For the special case of
Gaussian kernels, we have derived explicitly the probabil-
ity density of the image intensity function F. We have
also derived this density for general kernels in the case of
a binary source intensity distribution.

Next we have discussed the correlations within the
phases that are generated by cuts of the image intensity
F. The one-point correlation function, which corre-
sponds to the volume fraction of the chord phase, was
shown to relate simply to the cumulative-distribution of
F in any dimension. We have analyzed the two-point
correlation function and obtained an expression for it in
one dimension in terms of the locations of the roots of
F —F,. We have outlined in the Appendix two alterna-
tive methods to find these roots. Moreover, for a Gauss-
ian kernel and binary intensity distribution, we have cal-
culated the two-point correlation function S,(y) in one
dimension. We have found that this system is almost
identical to a Poisson distribution of monodisperse rods.

The results of this study demonstrate that by varying
the source intensity f(x), kernel K (x), and cutoff value
F, coarse-grained models can be made to represent the
morphology of practically any heterogeneous material.
We have shown that by choosing f, K, and F, our
coarse-graining procedure can generate distributions of
finite-sized particles in a matrix. This is a unique way of
producing such particulate morphologies. Weinrib and
Halperin [6] studied the value of F, at which coarse-
grained Gaussian and Laplace-Gaussian transformations
percolate, but we have presented here a theoretical for-
malism that represents and computes correlation func-
tions that statistically characterize the microstructure of
such models in general. In particular the n-point correla-
tion functions S, that we have discussed are required to
compute bulk properties such as the effective conductivi-
ty [1,3,5], effective elastic moduli [2,5], trapping rate in
diffusion [5], and fluid permeability [S5]. A significant
point that needs to be mentioned is that our analysis is
valid for samples of arbitrary size, in contrast to tradi-
tional studies in heterogeneous materials that typically
pertain to infinitely large systems.

In future work we will focus our attention on calcula-
tions of the correlation functions of coarse-grained mod-
els in two and higher dimensions. We will also separately
study the inverse problem mentioned in Sec. II, namely,
the inference of the source intensity f(x), and its statis-
tics, given the smoothed intensity of the image F (x), with
and without noise in the coarse-graining transformation.
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APPENDIX. ALTERNATIVE WAYS FOR FINDING
THE ZEROS OF A FUNCTION

Here we outline two alternative methods to extract the
zeros of the function F(x)—F,. The generic functions
that are discussed in the text have M zeros, which are
predominantly of multiplicity 1, but in some cases may be
of multiplicity 2 (this happens exactly when two zeros

coalesce). Construct the Cauchy integral
1 z™dF / dz
=1 = Al
m = 2mi P F2—F, zaz (AD

where the contour C is a circle of radius L centered at
x =0. This formulation works only if F(z) is analytic in,
and on, C. The right-hand side of (A1) originates from
the residue theorem, and the sum is carried out over all
the zeros of the function F(z)—F, within C; the prefac-
tor a; is the multiplicity of the ith zero. Carrying out this
integral with m =0 gives the total number of zeros
G,=M'= M, where zeros with multiplicity 2 are counted
twice. Therefore the first step is to solve for G, and to
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find M’'. The next step now depends on taste and compu-
tational convenience. One alternative is to progress by
constructing the quantities G,, with m =1,2,...,M’, ob-
tain a set of M’ nonlinear algebraic equations, and then
solve for the zeros.

However, suppose that we have a good method for
finding zeros of a polynomial, rather than of a general
function. In this case we can find the polynomial of order
M’ whose zeros are exactly {§;}. This is done in the fol-
lowing way: Denoting the coefficients of the sought poly-
nomial by c,, _, and requiring that the coefficient of z¥ '
is unity, we can use Newton identities to find the values
of ¢,, from the knowledge of G,,. These identities give
recursive formulas for the coefficients in the form [14]

m—1
-mt > Gics 1y j1+G,=0. (A2)
ji=1
Thus, depending on computational convenience we can
either solve the nonlinear equations or we can form a po-
lynomial whose zeros are the same as those of F(x)—F,
and find its zeros by standard numerical routines.
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