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Abstract. The equation of motion of twists on classical antiferromagnetic Heisenberg spin chains are
derived. It is shown that twists interact via position- and velocity-dependent long-range two-body forces.
A quiescent regime is identified wherein the system conserves momentum. With increasing kinetic energy
the system exits this regime and momentum conservation is violated due to walls annihilation. A bitwist
system is shown to be integrable and its exact solution is analysed. Many-twist systems are discussed
and novel periodic twist lattice solutions are found on closed chains. The stability of these solutions is
discussed.

PACS. 75.60.Ch Domain walls and domain structure – 05.45.-a Nonlinear dynamics and nonlinear
dynamical systems

1 Introduction

Classical antiferromagnetic spin chains are far from being
fully understood [1]. At low energies, it has been known
for quite some time that they support spin wave and in-
stanton solutions [2,3], but recently it was found that they
also admit multitwist solutions [4,5]. The aim of this pa-
per is to study the kinetics and dynamics of these multi-
twists. In the following I introduce these solutions, derive
their equations of motion, and discuss some of their in-
triguing properties. In particular, I identify a ‘quiescent’
regime where the system conserves momentum. Outside
this regime twists collide and annihilate, whereupon the
momentum of the system changes discontinuously. I show
that a system of two twists on an open-ended chain is in-
tegrable and its exact solution is found and analysed. Fi-
nally, I discuss multitwists on closed chains and argue that
the twists form a periodic lattice. These lattices are found
to be stable against perturbations of wavelength longer
than the lattice periodicity and unstable otherwise.

2 Multitwist solutions: Brief review

Assume a chain of antiferromagnetically coupled spins
with only nearest neighbour interactions described by the
spin exchange Hamiltonian

H =
∑

i

JSi · Si+1 J > 0. (1)

Distinguishing between the odd (So) and even (Se) sublat-
tices, one defines the total magnetisation, ζ = A(Se +So),
and the staggered magnetisation, η = B(Se − So). A and
B are normalisation constants. The equation of motion of
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the spins can be converted into equations for these fields.
In the low energy limit, and after rescaling time and po-
sition appropriately, one finds that the lowest order equa-
tion with a nontrivial solution is the one for the staggered
magnetisation [6,7],

∂η

∂t
= η × ∂η

∂x
· (2)

The unit vector η is characterised by its angles, θ and φ,
whose equations of motion can be obtained from (2).
Defining cos θ = tanhψ [4,5] simplifies those equations to

∂ψ

∂x
=
∂φ

∂t
;

∂ψ

∂t
= −∂φ

∂x
(3)

which are the familiar Cauchy-Riemmann equations.
Charge-like sources correspond in this context to spins
fixed at a given orientation and lead to logarithmic sin-
gularities. Beyond sources and sinks all the analytic func-
tions solve (3). Once these solutions are translated back
into the θ − φ language, the sources correspond to the
well known n-instanton solutions discussed by Belavin and
Polyakov [3,8]. The analytic functions give rise to trav-
elling multitwists whose locations along the chain corre-
spond to the nodes of ψ. Each such twist separates be-
tween a state of cos θ = 1 and cos θ = −1. It is these
solutions on which I focus here.

3 The equations of motion

Assume an open-ended chain with N twists on it. The
general solution for ψ can be represented in the form

ψ =
N∑

n=1

PN−n(t)xn =
N∏

n=1

(x− xn(t)) (4)
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where Pn are polynomials of order n and a twist in the
staggered magnetisation corresponds to a real value of xn.
The coupled field φ has a similar form, but is of little
interest for the purpose of this discussion.

Assuming no sources, ψ must obey Laplace’s equation

∇2ψ = ψ


 N∑

n=1

N∑
m �=n

ẋnẋm + 1
(x− xn)(x − xm)

−
N∑

n=1

ẍn

x− xn


 = 0.

(5)

Since this equation is valid for all x it must hold in the
vicinity of xn and therefore

ẍn − 2
∑
m �=n

1 + ẋnẋm

xn − xm
= 0 (6)

which is the equation of motion of the nth twist. It de-
scribes a ’force’ on it due to interaction with the other
twists. The following should be noted: (a) The force on
the nth twist consists of a sum of two-body forces between
it and every other twist. There are no forces involving
more than two twists. (b) Newton’s third law of action
and reaction applies in that the force on the nth twist due
to twist m is equal but opposite to the force by twist n
on m. (c) Equations (6) are invariant under time rever-
sal. For any forward solution ψf (t) thre exists a backward
solution, ψb(t) = ψf (−t). (d) The system conserves mo-
mentum, as can be verified by summing over n and noting
that the interaction terms cancel in pairs. It follows that

γ̈ =
1
N

d2

dt2

N∑
n=1

xn = 0 (7)

leading to γ̇ = γ0 being a constant of the motion. Since γ
is the centre of mass of the system of twists then the above
amounts to conservation of the total momentum. (e) The
interactions between the twists are long-ranged and con-
sist of two contributions: a Coulomb-like repelling term
and a coupling between the velocities of the twists. This
interaction will be shown to give rise to rich dynamics.

4 The Bitwist: An exact integrable solution

For insight into the dynamics of twists it is best to first
look into the kinematics of a small system: a chain sup-
porting a double twist. Starting from the equations of mo-
tion of x1 and x2, I define two new variables: the centre of
mass γ and the separation δ = (x2−x1)/2. Using the fact
that γ̇ = p0 is constant, a straightforward manipulation
gives

δδ̈ + δ̇2 − c2 = 0 (8)

where c =
√

(1 + p2
0). This equation is invariant under

δ → −δ as well as under time reversal. It admits a linear
solution δ1 = ±ct+δ0, with δ0 an initial separation and the
± corresponding to either a forward or backward solution.

Equation (8) has an interesting first integral and constant
of the motion,

δ2(δ̇2 − c2) = const. (9)

The linear solution is a member of a larger family:

δ = ±
√
c2t2 + 2v0δ0t+ δ20 . (10)

Here δ0 and v0 are the initial separation and its rate of
increase, respectively. It can be observed that asymptot-
ically the rate of increase tends to a constant, δ̇ = c,
which depends only on the initial momentum of the sys-
tem, p0. It is straightforward to interpret this solution:
Starting with v0 > 0, the separation between the two
walls increases forever. When 0 > v0 > −c the walls ap-
proach each other at an ever slower pace, until at time
t =| v0 | δ0/c2 they achieve a minimum separation of
δmin = δ0(1 − v2

0/c
2) and then they move apart again.

Finally, when v0 < −c the gap between the twists de-
creases until, at time tc = δ0

(
|v0 | −

√
v2
0 − c2

)
/c2, they

collide. Upon collision the state between the twists disap-
pears altogether, which means that the twists annihilate
each other.

5 Multitwist systems and stripe solutions

Turning to many-twist systems, I would like to focus at-
tention on a ’quiescent’ regime, where all nearest neigh-
bour twists obey the condition ẋnẋn+1 > −1. In this
regime all twists repel, leading to an ever expanding sys-
tem. Since no collisions can occur the number of twists is
unchanged and the system conserves momentum. Outside
the quiescent regime there appear attractive forces be-
tween nearest neighbour and collisions can happen, where-
upon twists annihilate. On annihilation the total momen-
tum, as defined above, jumps discontinuously since the
annihilated twists take their momentum out of the sys-
tem. Thus, momentum is conserved only between anni-
hilation events. Interestingly, twists may also be created
in pairs [9], which would similarly change the total mo-
mentum. Numerical studies of multitwists on open-ended
chains, which cannot be included for lack of room, support
the analysis presented here.

Finally, a fascinating variation on the theme is the be-
haviour of N twists on a closed chain. Equations (6) admit
a periodic lattice solution with twists positioned along a
L-long chain at intervals of L/N . These can be regarded
as alternating stripes of the two states with the twists
separating them, and are therefore referred as stripe solu-
tions. These solutions can be analysed by first expressing
the field ψ in the form

ψ = Re
N∑

n=0

bn

(
teiθ

t0

)n

= ψ0t
N

N∏
n=1

(µ− µn). (11)

Here, N and the coefficients bn are determined by ini-
tial data at some time t0, µ = cos θ, µn = cos θn, and
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ψ0 is a constant. The equations of motion of the walls
are obtained by substituting the rightmost expression into
∇2ψ = 0 in cylindrical coordinates. This gives the equa-
tion of motion of the nth domain wall at θn

µ̈n + 2Nµ̇n + µn = 2
N∑

m �=n

µ̇nµ̇m + 1 − µ2
n

µn − µm
(12)

where a dot stands now for a derivative with respect to
τ = ln (t− t0). This equation describes quite intricate dy-
namics. Nevertheless, it can be seen from equation (12)
that eventually the solution settles into the highest mode,
ψ → bN (t/t0)N cos(Nθ), and therefore the dynamics that
equation (12) gives rise to, while rich and interesting, must
be transient.

The stability of the stripe structure depends very much
on the type of perturbation to it. From equation (12)
we can see that perturbations of wavelength longer than
L/N grow slower than the Nth mode and therefore would
be damped out. However, wavelengths shorter than that
would grow faster than tN and would eventually take over.
For example, consider a perturbation at t = t1 > t0 by a
term of the form bM cos(Mθ), where M > N . Presuming
a small perturbation means bM � bN . The time that it
takes this term to destabilise the N -period solution, td,
can be estimated from the condition

bN

(
td
t0

)N

≈ bM

(
td − t1
t1

)M

· (13)

From this expression it is straightforward to see that
td � 2t1, indicating that even though the stripe lattice is

in principle unstable, it would take a long time before it
actually deteriorates beyond recognition.

In conclusion, I have discussed the dynamics of twists
on classical antiferromagnetic Heisenberg chains. Their ex-
plicit equation of motion has been derived and they have
been shown to experience only two-body, position- and
velocity-dependent, forces. The forces are long ranged and
can be either repulsive, in a quiescent regime, or attrac-
tive. The dynamics is rich both due to the highly nonlinear
nature of the equation of motion and because twists an-
nihilate upon collision. An explicit solution has been pre-
sented for a bitwist system. On ring-like chains the equa-
tion of motion has been shown to give rise to periodic
solutions. These solutions have been found to be stable
against perturbations of long wavelength but unstable to
short ones.
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