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Auxeticity is the result of internal structural degrees of freedom that get in the way of affine deformations. This paper
proposes a new understanding of strains in disordered auxetic materials. A class of iso-auxetic structures is identified, which
are auxetic structures that are also isostatic, and these are distinguished from conventional elasto-auxetic materials. It is then
argued that the mechanisms that give rise to auxeticity are the same in both classes of materials and the implications of this
observation on the equations that govern the strain are explored. Next, the compatibility conditions of Saint Venant are
demonstrated to be irrelevant for the determination of stresses in iso-auxetic materials, which are governed by balance
conditions alone. This leads to the conclusion that elasticity theory is not essential for the general description of auxetic
behaviour. One consequence of this is that characterisation in terms of negative Poisson’s ratio may be of limited utility.

A new equation is then proposed for the dependence of the strain on local rotational and expansive fields. Central to the
characterization of the geometry of the structure, to the iso-auxetic stress field equations, and to the strain-rotation relation is a
specific fabric tensor. This tensor is defined here explicitly for two-dimensional systems, however, disordered. It is argued
that, while the proposed dependence of the strain on the local rotational and expansive fields is common to all auxetic
materials, iso-auxetic and elasto-auxetic materials may exhibit significantly different macroscopic behaviours.
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1. Introduction

Auxetic materials expand laterally when stretched and

contract when compressed, a phenomenon that is

commonly regarded as a display of a negative Poisson’s

ratio. This behaviour originates from particular structural

characteristics on the cellular level that give rise to the

unfolding of basic structural elements upon stretching and

folding back in upon compression. Cellular solids that

exhibit such a behaviour can be made of a variety of

materials, including polymers [1] and metals [1,2]. This

unique behaviour makes auxetic materials very useful in

applications where high shear to bulk moduli are required

and where densification upon impact is essential, such as

in armours and energy absorbing materials.

A variety of natural [3–6] and man-made [7,8]

structures, which give rise to auxeticity, have been

discussed in the literature. A well known two-dimensional

structures are honeycombs with inverted cells [9] and

periodic structures with especially designed basic

elements. However, while ordered structures are con-

venient for the analysis of macroscopic deformations in

response to external forces, there is currently very little

understanding on the modelling of deformations in

disordered structures.

This paper has several purposes: (i) to distinguish

between two classes of auxetic structures—iso-auxetic

and elasto-auxetic; (ii) to demonstrate that elasticity is not

fundamental to auxeticity, suggesting that negative

Poisson’s ratio has limited usefulness as a descriptor of

auxetic behaviour; (iii) to write the auxetic strain in terms

of local rotational and expansive fields; (iv) to demonstrate

that the key role of rotations can be accounted for within

the context of symmetric stresses, obviating descriptions

using Cosserat theory.

The rationale and the structure of the paper are as

follows. In the first part it is demonstrated that auxetic

structures may also be isostatic. The term isostatic refers

to structures that are statically determinate in mechanical

equilibrium. This class of structures is termed here iso-
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auxetic, to be distinguished from more conventional

auxetic structures that are termed here elaso-auxetic. In

isostatic structures in mechanical equilibrium the internal

forces on the scale of the basic elements can be

determined uniquely only from balance conditions of

forces and of torque moments. This means that in such

materials the macroscopic continuous stress tensor is

governed by equations that differ significantly from those

of elasticity theory, which rely on constitutive stress-strain

relations. The isostatic field equations are given below

explicitly for two-dimensional systems. The independence

of the stress field of compliance-based information

obviates descriptions in terms of elastic constants. Since

the mechanism for auxetic strain is independent of

whether the medium is isostatic or not it then follows that

elasticity theory is not fundamental to the modelling of

auxeticity in general. This conclusion is explored here.

It further suggests that negative Poisson’s ratio, a quantity

often used to characterise auxetic behaviour, must be

understood only as a ratio of strains in perpendicular

directions—not as a ratio of elastic moduli.

The existence of iso-auxetic materials has another

consequence; on length-scales larger than that of the

elements, isostaticity theory gives rise to symmetric stress

tensors. This casts doubt on the utility of Cosserat theory,

which allows for anti-symmetric stresses and local

residual torques for the description of macroscopic

auxetic behaviour. The reconciliation of symmetric stress

tensors with the significant role that local rotations clearly

play in the modelling of auxetic behaviour is done in a

following discussion.

The next part of the paper describes a model for strains

in auxetic systems. I propose a new expression for the

strain in terms of local rotational and expansive fields. The

equation is valid for all auxetic materials. The stresses that

drive these local fields, however, differ between iso-

auxetic and elasto-auxetic materials and it is conjectured

that this difference may give rise to significantly different

macroscopic behaviour.

2. Isostatic systems, iso-auxetic structures and
implications

Consider an auxetic structure made of elements that connect

to nearest neighbours at exactly three contact point.†

Examples of such elements are stars, unfolding elements,

and rigid elements, as sketched in figure 1. No translational

order is presumed in the structures considered in this paper—

the elements are permitted to be irregular in size, shape and

orientation across the system. Moreover, a mixture of such

elements in one system would work equally well.

Consider now an equivalent framework of triangles that

represent the basic elements. The edges of the triangles are

defined as the lines that extend between the three points of

contact that belong to the same element. In structures made

of rigid triangles it is straightforward to identify points of

contacts, but in some systems these points are not uniquely

defined (see, e.g. figure 2). Fortunately, such uniqueness is

not essential for the purpose of the following analysis. An

example of a particular triangular construction is demon-

strated in figure 2 for a structure made of three-armed stars.

The triangles form a connected framework that spans the

plane and enclose polygons which we shall term cells.‡ It

will be assumed below that all the cells have even number

of triangles around them. This assumption simplifies the

discussion in that it ensures that the system possesses a

staggered order everywhere, a concept that will be

discussed in somewhat more detail later. It is possible to

lift this assumption using ideas from stress analysis of

open-cell foams [10–12], but this is left to a later report.

As long as the contacts between elements can support

torque moments there is a finite threshold of loading below

which an equilibrium state can be maintained. Suppose then

that the structure is in mechanical equilibrium under a given

load. At this state the triangles transmit forces through their

contacts and these forces are all balanced. The forces

exchanged between two neighbouring triangles v and v0 are

equal and opposite, fvv 0 ¼ 2 fv0v. Suppose that we wish to

solve for the force field. For a structure of N triangular

elements there are 3N/2 contact points,{ each of which

corresponding to one force vector. Therefore, with two

components per force, this gives 3N unknowns to solve for.

There are three balance conditions on each triangle; two

of force and one of torque moment. It follows that the N

triangles give altogether 3N equations, exactly matching

the number of unknowns. This leads to the conclusion that

iso-auxetic systems are statically determinate, or isostatic.

Since the forces between elements can be solved from

balance conditions alone then they are independent of the

compliance of the material. Now, the macroscopic stress

field is only a coarse-grained representation of these basic

(a) (b) (c)

Figure 1. Examples of triangular building blocks: (a) a three-armed star,
(b) a folding element and (c) a rigid triangle. Any combination of such
elements has the potential to form an iso-auxetic structure.

†In fact, the following discussion holds for more general systems where the mean number of contacts per unit is three.
‡The terms and the notations are intended to make contact with a related analysis in solid open-cell foams, where vertices and cells are key

concepts [11].
{Effects of the boundary are ignored because for N @ 1 these effects are of order 1=

ffiffiffiffi
N

p
: These effects can be included for finite systems without loss

off generality.
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discrete forces. It follows that the continuous stress can

also be determined without any information about stress–

strain relations.

This is a significant observation—it means that elasticity

theory, which resorts to such relations, is redundant for

the determination of stresses in iso-auxetic systems.

This seemingly surprising conclusion goes beyond

isoauxeticity—it holds for most open-cell cellular solids

both in two and in three dimensions [11]. This realization

has led to the development of a new theory for the stresses

that develop in isostatic cellular solids [10–12]. A review

of isostaticity theory is outside the scope of this discussion,

but it is useful to recall several of its features. At its basis are

the following field equations that it give rise to

›isij ¼ gj

sij ¼ sji

Qijsij ¼ 0:

ð1Þ

In these equations ›i is a partial derivative with respect

to the coordinate xi, sij is the ij-th component of the stress

tensor, gj is the j-th component of an external force field

that may be position dependent (body forces are ignored

without loss of generality), and Qij is a geometric

(also termed fabric) tensor that characterises the local

microstructure. The equations contain no reference to

elastic constants and indeed to any compliance-based

information; the only constitutive information is encapsu-

lated in the geometric tensor.

Equations (1) lead to three significant conclusions.

I. It can be shown (see below) that the equations are

hyperbolic, in stark contrast to the elliptic equations of

elasticity theory. This difference is crucial in that, unlike in

elastic media, the stress fields that develop in isostatic

materials may be strongly non-uniform and are extremely

sensitive to the details of the boundary loading [12].

The difference in the stress solutions between iso- and elasto-

auxetic materials is bound to give rise to different strain fields

and therefore to different macroscopic behaviour.

II. Auxetic behaviour arises from the folding and

unfolding of basic elements and as such it is independent

of whether the structure is isostatic or not. It is therefore

expected that the modelling of auxeticity should be the

same for both types of media. Yet, if stresses in isostatic

materials are independent of bulk elastic constants then so

should be the description of auxeticity in more

conventional structures, i.e. in structures with higher

mean number of contacts. Moreover, one expects the same

description to apply also to structures made of infinitely

rigid elements that are non-isostatic, such as the systems

of rectangles discussed in Ref. [13]. The redundancy of the

elastic constants for modelling auxetic behaviour suggests

that it is misguided to interpret Poisson’s ratio in auxetic

materials as a ratio of elastic moduli. Rather, when using

negative Poisson’s ratio it must be borne in mind that it can

only relate to the ratio of perpendicular strains.

III. As can be seen from the second equation in (1), the

stress tensor of isostaticity theory is symmetric. This

means that residual torque moments vanish on macro-

scopic length-scales, which can be readily shown from

first-principles in any medium that is not coupled to an

external torque field. It must be emphasised at this stage

that there is no contradiction between the symmetric

nature of the macroscopic stress tensor and the fact that

rotation of elements is at the core of auxetic behaviour.

The reconciliation of the two will be discussed in the next

section. This obviates attempts to model large-scale

auxetic behaviour using Cosserat theory [14], a theory that

allows anti-symmetric components in the stress field.

3. Strains in iso-auxetic structures

Deformations in auxetic materials are intimately linked to

geometric structural details. Therefore, the first step

towards a basic theory is a method of characterization of

the geometry of the structure. This method has to be

general in that it can describe any arbitrary disordered

structure and it must be useful for the modelling of strains.

The geometric (or fabric) tensor Qij of equation (1)

provides such a descriptor.

Consider an iso-auxetic structure, part of which is

sketched in figure 3. Make every triangle edge into a vector

Figure 2. The construction of triangle (dotted lines) for a structure
of three-armed stars. The contact points are defined as the midpoints
of the short arms at the periphery of the stars. A collection of such
elements would give rise to an iso-auxetic structure. Although the figure
depicts an ordered structure, this definition applies to disordered
structures equally well.

fvv’ 

v
v’

Figure 3. A part of an iso-auxetic structure made of elements that
connect to nearest neighbours at exactly three points. The connections
make triangles in the plane that partition it into polygonal cells. Four
triangular basic elements are shown shaded.
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by assigning it a direction such that the directed edges

‘circulate’ around the triangle in the anticlockwise

direction (see figure 4). Define the centroid of every

triangle as the mean position vector of its three corners.

Similarly define the centroid of every cell polygon as the

mean position vector of the polygon corners. Note that

every edge can be indexed uniquely by the triangle v and

the cell c that it borders, ~rcv: Extend now a vector from the

centroid of triangle v to the centroid of one of its

neighbouring cell c; ~Rcv (see figure 4).

The tensor Qij of equation (1) is the symmetric part of

the outer product of these two vectors, summed over the

three cells around triangle v and transformed as follows

Qv
ij ¼

1

2
121
ik

X
c[v

ðrcvk Rcv
l þ Rcv

k rcvl Þ1lj; ð2Þ

where y1 ¼
� 0 1

21 0

�
is the p/2 rotation in the plane.

This tensor turns out to be a natural descriptor of skeletal

cellular structures. In addition to playing a key role in the

equation that couples the local stress to the local structure,

the tensor Qij is also central to the description of strains in

auxetic structures, as we shall see below.

Let the iso-auxetic structure be in mechanical equili-

brium under a given external load. Upon increase of the

load the local stresses change and the medium deforms. The

macroscopically observable strain is the consequence of

“constructive superposition” of deformation of triangles.

The aim of the following discussion is to express these

contributions to the strain field in terms of the structural

characteristics and the local stress. The key point is that in

the quasi-static limit a change in the local stress would give

rise to local rotations of triangles and this, in turn, would

add up to effect a global strain. Limiting the discussion to

weak external loadings, the global strain has two

contributions from local strains—one from rotation of

triangles and one from triangle expansion (shrinking can be

regarded as an inverse expansion)

eij ¼ erot
ij þ e

exp
ij : ð3Þ

It is straightforward to see that in auxetic materials that

consist only of ideally rigid triangles (e.g. such as in Ref.

[13]) the strain can be described by the rotational term

alone. When triangle v rotates by a small angle u, it

contributes to the strain

erot
ij ¼ Qiju: ð4Þ

This expression is identical to the rotational term that gives

rise to dilatancy in granular media as it starts to yield [15].†

The rotational field is position dependent, u ¼ u(r), and

depends on the local stress sij(r).

Suppose now that the triangles are made of elements

that are not rigid but rather can fan out or fold in under

local stresses. Then, as the local stress changes, rotation

takes place, which also effects expansion of the triangle.

The expansion need not be isotropic, namely, the element

may expand at different rates in different directions. It is

difficult to imagine that in generally disordered structures

expansion would not be accompanied by local rotations.

The strain due to expansion can be described by

e
exp
ij ¼ Eijklskl; ð5Þ

where, if we confine ourselves to symmetric strains, then

the symmetries of the expansion tensor Eijkl are similar to

those of the compliance tensor that relates conventional

stresses to conventional strains.

Now, since a local rotation is the result of the local

stress acting on the triangle then the rotation angle can be

expressed in terms of it, u(r) ¼ u({sij(r)}). Therefore,

using this form in equation (4) and upon substitution of

relations (4) and (5) into (3), we end up with a stress–

strain relation for the iso-auxetic structure

eij ¼ Qijuð{skl}Þ þ Eijklskl: ð6Þ

The coarse-graining of this relation presents a challenge.

The difficulty is that there are inherent statistical anti-

correlations between values of the tensor Qij on

neighbouring triangles [11]. This feature gives rise to

fluctuations of the Qij’s across the system around a vani-

shing volume average. A detailed discussion of the coarse-

graining issue is outside the scope of this presentation, but

several points should be emphasised. First, a procedure that

overcomes this difficulty for general structures (i.e. for

structures that do not possess staggered order) has been

developed [12]. The assumption made above that every

polygonal cell has an even number of triangles around it

leads naturally to a staggered order—one can label

triangles by positive and negative such that every positive

triangle is surrounded by negative triangles and vice versa.

From this one can observe that the rotation angles u are also

rcν

Rcν
cell c

vertex ν

Figure 4. The construction of the geometric tensor Qij for a disordered
iso-auxetic structure. First, the triangle edges are made into vectors ~r cv by
assigning them directions such that they circulate the triangles in the
anticlockwise direction. Vectors ~Rcv are then defined, which extend from
the centroid of triangle v to the centroid of its neighbour cell c. The
geometric tensor Qij is defined as a sum of the outer product of the pairs
rcvi Rcv

j over the cells around triangle v, combined with the straightforward
rotations described in equation (2).

†Dilatancy is not mentioned explicitly in Ref. [15], but this phenomenon arises from grain rotations exactly as auxeticity originates in element
rotations in auxetic materials. Thus, equation (4) describes both auxeticity and dilatancy in systems of rotating rigid elements. Equation (4) is paralleled
by the second term on the right hand side of equation (5.1) in Ref. [15]. The equivalence can be observed by noting that: (i) their relation is for the strain
rate rather than strain, i.e. vkl is the time derivative of my u, (ii) their p is my Q, and (iii) their relation is given for three-dimensional systems while mine
is for two, pijkl ) Qij:
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anti-correlated between neighbouring triangles, with all the

positive triangles rotating in one direction and all the

negative triangles in the opposite. Now, since both the

tensor yQ and the angle u are anti-correlated between

neighbouring grains then their product in equation (6) must

have the same sign across the structure. This leads to the

conclusion that the rotational term must have a well-

defined volume average and therefore that it must give rise

to a macroscopic observable field. Whether the macro-

scopic mean corresponds to auxetic or conventional

behaviour depends on the geometric state of the structure.

The extension of this discussion to “frustrated” systems,

containing cells bounded by odd numbers of triangles, is

possible and it has been discussed elsewhere in the context

of the coarse-graining of the tensor Qij [12]. The second

term of equation (6) suffers from no such complications

and its average over the system has a straightforward

macroscopically observable consequences. The two

terms of equation (6) may interfere “constructively” or

“destructively”.

It is important to note that the definition of the fabric

tensor yQ is equally valid for elasto-auxetic structures.

Moreover, the rotation and expansion of elements in all

auxetic structures can be described by equation (6).

4. Conclusions and discussion

To conclude, a new understanding has been proposed for

the strain that develops in auxetic materials in response to

applied stresses. I have shown that isostatic structures can

give rise to auxetic behaviour and I have termed this class

of materials iso-auxetic. I have demonstrated that stresses

in auxetic materials need not necessarily be described by

elasticity theory. The reason is that in mechanical

equilibrium iso-auxetic materials are governed by

isostaticity theory, rather than elasticity theory, and as

such these equations do not resort to conventional stress–

strain relations.

This conclusion has several implications. One is that it

limits the utility of negative Poisson’s ratio as a means to

obtain strain-stress relations in auxetic materials in

general. The ultimate reason for this is that the elastic

properties of the static material have very little to do with

the manner in which an auxetic material strains.

Another, more significant implication, is that the strain

that develops in auxetic materials in general is only a

function of the local expansion and rotation of the basic

building blocks of the structure. The explicit dependence

of the strain on local expansive and rotational fields is

given, equation (6). This relation is common to all auxetic

materials, whether iso-auxetic or not.

It is important to note, however, that equation (6)

does not ensure auxeticity. What is offered in this paper is

a general formalism to describe strains in systems of

rotating and expanding/shrinking connected elements.

The formalism is valid independently of whether the

system is auxetic or not.

To experimentalists and technologists a key question

concerns the practical differences between iso-auxetic and

elasto-auxetic structures. After all, not only does the strain

given in equations (3)–(5) depend on the local rotational

and expansive fields in the same way in both classes of

materials, but also the dependence of these fields on the

local stress, through u ¼ u({sij}) and equation (5), cannot

be affected by the local number of contacts between

elements. Moreover, under quasi-static deformations the

local expansion and rotational fields can be expressed at

all times in terms of the local stress, which can be used to

give an explicit relation between the stress and the strain,

as indicated in equation (6). It follows that this relation is

also universal to all auxetic materials. The real difference

between iso-auxetic and elasto-auxetic systems stems

from the equations that govern the stress field itself at the

beginning of, during, and the end of the deformation

process. The stress field equations give rise to different

solutions in the two classes of materials and this difference

translates into significantly different spatial stress

distributions. Specifically, being hyperbolic, equation (2)

give rise to non-uniform stress fields, in stark contrast to

the uniform solutions of the elliptic field equations of

elasticity theory. This difference must result in radically

different spatial distributions of rotational and expansion

fields in disordered structures, which in turn should lead to

distinctly different strain fields. This author believes that

these differences should be macroscopically observable.
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