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Abstract. It has been recognized that the concept of isostaticity holds the key
to understanding stress transmission in cohesionless granular media. Here the
field equations of isostaticity theory in two-dimensions are studied and solutions
are derived. The equations are first decoupled into integro-differential equations
for the three independent stress components, highlighting the role of a particular
position-dependent fabric tensor. In disordered, but statistically isotropic, systems
the fluctuations decay with length-scale and the decoupled equations can be
expanded to first order and solved. The zero-order solutions are obtained in closed
form and give rise to force chains that propagate along straight characteristic
lines. At this order solutions do not attenuate and chains cross one another
without interference or scattering. The analysis of the first-order correction reveals
emergence of weaker secondary force chains that branch off the zero-order chains
and into a ‘cone of influence’ that they span.
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1. Introduction

The physics of granular matter has attracted much attention in recent years due to their ubiquity
in nature and the dominant role that they play in everyday life. Examples are soil, gravel, beans,
agricultural grain and seeds, pharmaceutical products, and powders, to name a few [1]. Most
technological materials pass through a particulate form at some stage during their processing and
the handling of particulates is an essential issue to a wide range of industries. From a theoretical
point of view, granular matter exhibits a wide range of complex behaviour that is far from
fully understood, exhibiting features that are solid-like, liquid-like, gas-like, or a simultaneous
combination of these [2].

A granular system is an assembly of macroscopic particles whose large size has two main
consequences: one is that it makes thermal fluctuations irrelevant and another is that particles
interact practically upon direct contact. Dry granular materials transmit only compressive forces
while in wet or charged materials attractive forces are also possible. The following discussion
focuses only on compressive interactions.

To understand the mechanical behaviour of granular matter it is essential to make the
link between transmission of forces on the granular level and a macroscopic description of a
continuous stress field. It is straightforward to write down the equations that govern the discrete
intergranular forces, namely, Newton’s equations of balance of forces and torque moments.
It is the translation of those into a set of differential equations for a representative stress field
that has proved elusive. Observations of non-uniform stresses in systems of dry grains [3, 4] and
in numerical simulations [5] prompted a search for a description that goes beyond conventional
elasticity theory. The reason is that the latter cannot explain straightforwardly such stresses
without resorting to elaborate mechanisms for long range anisotropic organization of bulk elastic
constants. This led to several models of stress transmission, using empirical [6] and statistical
[7]–[9] approaches.

It has been recognized that to make progress in the field it is essential to understand first
stress transmission in isostatic, or statically determinate (SD) systems [7, 8]. The latter are
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structures whose intergranular forces can be determined from the balance of forces and torque
moments alone. To be SD, a macroscopic pack of infinitely rigid grains has to satisfy only one
condition — that the mean number of force-carrying contacts per grain has a particular value
zc. This value depends on the dimensionality of the system d, on the roughness of the particles
and on whether or not they are spherical. It also depends on the ratio of boundary to volume
particles, but this dependence tends to zero rapidly with system size and can be neglected for
large systems. For packs of rough particles zc = d + 1, for frictionless and arbitrarily-shaped
particles zc = d(d + 1), and for smooth spheres zc = 2d [10].

Granular assemblies in nature are not necessarily isostatic and the usefulness of this concept
to general particulate systems has been questioned [11]. In particular, two aspects of the isostatic
picture came under fire. One is that real particles always have a finite rigidity, however high, and
the other is that in most real materials the mean number of contacts per particle in mechanical
equilibrium is larger than zc. Both these issues have been addressed recently and it has been
concluded that they do not invalidate the relevance of isostaticity to more general granular
matter. A detailed discussion of this issue is outside the scope of this paper, but it deserves
some elaboration. Firstly, it has been established in [12] that packs of compliant grains of mean
contact number zc do transmit stresses as ideal isostatic systems, albeit with corrections that
decay rapidly with system size. This issue has also been studied in [13]. Secondly, Blumenfeld
[14] introduced the idea that when the mean contact number is larger than zc then elastic regions
form and most realistic granular materials are in fact two-phase composites—part isostatic and
part elastic. Therefore, understanding the mechanics of pure isostatic systems is an essential step
to the modelling of granular systems in general. The purpose of this paper is to develop further
a recently-proposed isostaticity theory for two-dimensional (2D) systems [14, 15].

The most significant consequence of static determinacy to the present discussion is that
it vitiates stress–strain constitutive relations. This can be understood as follows. Being SD,
the intergranular forces can be determined irrespective of grain compliance. Since the stress is
only a continuous representation of these forces then the elastic properties of the material are
redundant to the determination of the stress field. This means that approaches that use strain-
based information, including elasticity theory, are ineffective for these materials. This realization
has given rise to an extensive search for a new set of stress field equations.

Any continuous static stress theory must include balance conditions. In 2D these consist of
two force equations,

∂xσxx + ∂yσxy = gx (force balance in the x-direction), (1)

∂xσxy + ∂yσyy = gy (force balance in the y-direction), (2)

and one equation of global torque moment,

σxy = σyx. (3)

In these equations gi are the component of an external force field !g = (gx, gy), which may
include body forces. The closure of these equations requires a relation between the stress field
and some constitutive properties. Elasticity theory imposes compatibility conditions on the strain
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and supplements it by phenomenological or empirical stress–strain relations [16]. In contrast,
isostaticity theory closes the equations by the relation

pxxσyy + pyyσxx = 2pxyσxy. (4)

Originally, this equation had been suggested on empirical grounds [6], with pij values
designed to fit observations of arches in conical granular piles. More recent work has established
this relation from first principles [15]. There the parameters pij have been shown to be the
components of a symmetric rank-two fabric tensor ¯̄P that characterizes the local structure.
Note that equations (1)–(3) contain no information about the ‘constitution’ of the material and
such information is only injected in equation (4). Therefore, the latter can be regarded as a
constitutive local stress–structure relation. It is interesting to note that equation (4) represents a
rare case where a constitutive relation can be derived rather than postulated or measured.

The values of pij have been shown to fluctuate on the granular scale around zero mean,
regardless of the topology or anisotropy of the structure, and this makes the coarse-graining of
relation (4) far from straightforward [15]. This difficulty has been resolved eventually by the
construction of a specialized procedure that takes advantage of inherent local anti-correlations
between neighbouring grains [17].A review of the coarse-graining procedure is outside the thrust
of this discussion, but one of its consequences is relevant to the following discussion. On the
granular level, the procedure averages, almost everywhere, over every second grain. Combined
with the anti-correlations, this gives rise to finite mean values of the renormalized pij and it is
this that makes possible the upscaling of equation (4). In its coarse-grained version, this equation
is valid for macroscopic scales with pij a continuous fabric tensor. In a later development [14]
it was shown that, under a simplifying assumption, to be pointed out below, the field equations
can be solved in closed form. The resulting solutions were shown to consist of stress chains that
cross the system.

This paper reports an analysis of the field equations beyond the discussion in [14]. The
following are the main results.

1. The equations are decoupled into individual integro-differential equations for the stress
components σij.

2. The stress is expanded to first-order in terms of the deviations of the fabric parameters pij

from their mean values and an equation is derived for the correction field. This shows that
the solution obtained in [14] is the zero-order term in the stress expansion.

3. It is found that the zero-order stress chains do not attenuate away from the load source and
that, on incidence, they pass through one another unchanged.

4. It is found that the correction field generates secondary side-branches into a cone
of influence. The validity and usefulness of the approach is discussed and supported
numerically.

2. The decoupled equations

The coarse-graining procedure of [17] gives a renormalized fabric tensor whose trace, pxx + pyy,
is predominantly of a specific sign. Whether positive or negative is immaterial both to the physics
of the problem and, as can be seen from equation (4), to the solution of the equations. Let us
then consider initially systems whose pij "= 0 everywhere. The special cases, when one of the
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pij vanishes locally, are simpler to analyse and are detailed in appendix A. Substituting σyy from
equation (4) into (2) gives

∂xσxx + ∂y

(
2qxyσxy − qyyσxx

)
= gx, (5)

where qij ≡ pij/pxx. Differentiating equation (1) with respect to y, multiplying the result by qyy

and adding to it the derivative of equation (5) with respect to x, gives
(
qyy∂yy + ∂xx + 2qxy∂xy

)
σxy −

(
∂xyqyy + ∂yqyy∂x + ∂xqyy∂y

)
σxx + 2

(
∂xyqxy + ∂yqxy∂x + ∂xqxy∂y

)
σxy

= ∂xgy + qyy∂ygx. (6)

Integrating equation (1) gives

σxx =
∫

(gx − ∂yσxy) dx + φ(y), (7)

where φ(y) is an arbitrary function of y. Substituting now this expression for σxx in (6), gives an
integro-differential equation for σxy. Upon multiplication by pxx and rearrangement, this equation
reads

(pxx∂xx + 2pxy∂xy + pyy∂yy)σxy + 2pxx(∂yqxy∂x + ∂xqxy∂y)σxy

+ pxx

(
∂yqyy∂x + ∂xqyy∂y + ∂xyqyy

) ∫ x

∂yσxydx′ =

(
pxx∂xgy + pyy∂ygx

)
+ pxx

(
∂yqyy∂x + ∂xqyy∂y + ∂xyqyy

) [
φ(y) +

∫ x

gx dx′
]

. (8)

The right-hand side of equation (8) does not involve the stress and can be regarded as a ‘source’
term. The function φ(y) is arbitrary and, for simplicity, we shall put it to zero in the following.
Thus, the entire right-hand side is a known function of position. The first operator on the left-hand
side of (8) is ¯̄P : ¯̄H ≡ L, where Hij = ∂ij is known as the Hessian. The equations for σxx and σyy

can be obtained in a similar fashion. It has been shown in [14] that, under the assumption that
the pij are constant, the equations for all the σij are identical but for the source terms. This result
is reproduced and extended in appendix B.

3. Analytical solutions

For clarity, the following discussion focuses on σxy but the analysis and results are also valid,
up to quantitative details, for the diagonal terms, which follow similar equations. At first glance,
equation (8) may appear too formidable to surrender a closed-form solution. Certainly, it can be
solved numerically, for example by an iterative procedure. Starting from an initial guess for σxy,
it can be substituted into the integral on the left-hand side and the integral computed. Regarding
this as an additional source term, the resulting differential equation can be solved for σxy. Treating
the solution as the next guess, it is inserted back into the integral on the left-hand side and the
procedure is repeated. The hope is that after a reasonable number of iterations the solution
and the guess converge to an acceptable accuracy. The disadvantages of this procedure are that
it is time-consuming, sensitively dependent on the proximity of the initial guess to the actual
solution, and that there is no guarantee that it converges quickly or even at all. Consequently, it
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is questionable whether this approach is easier than a direct brute-force solution of the original
coupled field equations [18]. Another approach is to treat directly the coupled balance equations
as a hyperbolic system and this is currently under study [19].

The approach taken here is based on the expectation that, barring long-range correlations,
coarse-graining in isotropic systems should smoothen out the grain-scale fluctuations of the
fabric parameters pij progressively with size. Consequently, above some length-scale, which is
still well below the size of the system, the fabric tensor can be represented by pij = πij(1 + δij).
Here πij are constant and δij & 1 are space-dependent fluctuations of zero mean. Moreover, the
gradients of pij will also be ignored. The validity of these approximations will be discussed in
the concluding section. Here and in the following the term πijδij implies no summation over i
and j. Using this form, let us expand the stress tensor to first order in δij, σxy = σ(0)

xy + σ(1)
xy , such

that σ(1)
xy is proportional to a linear combination of the δijs. The idea is to construct the equation

that governs σ(1)
xy and analyse it.

3.1. The zero-order equation and its solution

The zero-order equation corresponds to a constant value of the fabric tensor across the entire
system. Setting δij = 0 in equation (8) gives

(
πxx∂xx + 2πxy∂xy + πyy∂yy

)
σ(0)

xy = πxx∂xgy + πyy∂ygx. (9)

The left-hand side of (9) is the zero order of the operator L, L(0) = ¯̄& : ¯̄H and, for consistency,
the right-hand side source term is named f (0)

xy . In terms of these, equation (9) reads

L(0)σ(0)
xy = f (0)

xy . (10)

This is the equation obtained in [14]. To solve it, it is convenient to use the following linear
transformation of variables(

u

v

)
= 1

S

(
S 0

−πxy πxx

)
·
(

x

y

)
, (11)

where S ≡
√

−det ¯̄& has been established to be real on macroscopic length-scales [14]. In terms
of the new variables, the zero-order equation becomes

(∂uu − ∂vv) σ
(0)
xy = f (0)

xy . (12)

Since S is real, equations (9) and (12) are hyperbolic, a fact that has a fundamental consequences.
The general solution of equation (12) is

σ(0)
xy =

[
'xy(η) + Bη

xyη
]

+
[
)xy(ζ) + Bζ

xyζ
]

+
1
4

∫ η∫ ζ

f (0)
xy (η′, ζ′)dη′dζ′, (13)

where 'xy + Bη
xyη and )xy + Bζ

xyζ are arbitrary functions of η = v − u and ζ = v + u,
respectively. These functions are determined by the boundary data and comprise the solution
to the homogeneous equation. The lines of constant η and ζ are the characteristic curves of
equation (12), along which the solutions ‘propagate’ in the medium.
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Equation (9) is not unique to σxy. To this order, it applies to all the components σij, only with
different source terms f

(0)
ij [14], given explicitly in appendix B. Thus, the zero-order solution for

the entire stress tensor can be written in tensorial form,

¯̄σ(0) =
[ ¯̄A

η

'(η) + ¯̄B
η

η
]

+
[ ¯̄A

ζ

)(ζ) + ¯̄B
ζ

ζ
]

+
1
4

∫ η ∫ ζ ¯̄F
(0)

(η′, ζ′)dη′dζ′. (14)

In this expression

¯̄A
a

=





πxx

αa
1

1
αa

πxx



 , ¯̄B
a

=





αa

πyy

1

1
αa

πxx



 ba, ¯̄F
(0)

=
(

f (0)
xx f (0)

xy

f (0)
xy f (0)

yy

)

, (15)

a = η or ζ, αη ≡ πxy + S, and αζ ≡ πxy − S.
As is well known from the textbook 1D wave equation, the Green function of equation (12)

for an infinite medium is

G(η, ζ; η′, ζ′) = 1
2

[
H(η − η′) + H(ζ − ζ′)

]
, (16)

where H(x) is the Heavyside step function whose value is unity when x > 0 and zero otherwise.

3.1.1. Example. For illustration, suppose that the SD medium occupies the semi-infinite plane
x ! 0 and a localized load is applied to the boundary around x = 0. For simplicity, let us take
the force field !g to be constant, which results in f

(0)
ij = 0 (see also appendix B). Because the

equations are hyperbolic, care should be taken to avoid ill-posedness in the choice of the boundary
conditions and simplest are

σij(x = 0, y) = Uij(y), ∂xσij(x = 0, y) = Vij(y). (17)

The form (12) suggests that it is convenient to transform the problem from (x, y) to the (u, v)
plane. In the new coordinate system, every point along the boundary (x = 0, y) corresponds to
a point (u = 0, v = πxx

S
y). Furthermore, the boundary data become

σij(u = 0, v) = Uij

(
S

πxx

v

)
, ∂uσij(u = 0, v) = Vij

(
S

πxx

v

)
+
πxy

πxx

U ′
ij

(
S

πxx

v

)
, (18)

where U ′ is the derivative of U with respect to its argument y. The solution for the zero-order
stress field is then

σ
(0)
ij = 1

2

[
Uij

(
S

πxx

ζ

)
+ Uij

(
S

πxx

η

)]
+

1
2

∫ ζ

η

[
Vij

(
S

πxx

τ

)
+
πxy

πxx

U ′
ij

(
S

πxx

τ

)]
dτ. (19)
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Figure 1. The zero-order stress response to a localized Gaussian load. The
response comprises two different-magnitude stress chains that span a ‘cone of
influence’ between them. The chains penetrate the medium at different angles
that are determined by the fabric tensor.

Consider the relatively simple case Vij = 0. Changing variables in the integral on the right-hand
side to τ ′ ≡ S

πxx
τ and carrying out the integration, gives

σ
(0)
ij = 1

2

(
1 +

πxy

S

)
Uij

(
S

πxx

ζ

)
+

1
2

(
1 − πxy

S

)
Uij

(
S

πxx

η

)
. (20)

The solution represents penetration of the boundary stress σij into the system along two
characteristic lines,

yη = 1
πxx

(Cη + αηx) , yζ = 1
πxx

(
Cζ + αζx

)
, (21)

where Cη and Cζ are constants, determined by the positions of the localized boundary stresses.
An example of this solution is shown in figure 1 for a bell-shaped form of Uij, localized

around (x = 0, y = 0). The solution consists of two stress chains penetrating the material along
the characteristic lines defined by Cη = Cζ = 0,

yη = πxy + S

πxx

x, yζ = πxy − S

πxx

x. (22)

The elevated stresses along the characteristic lines give rise to forces that are significantly larger
along the lines than in the medium around them. These are force chains—a phenomenon that
has been the centre of attention following experimental [4] and numerical [5] observations. The
magnitudes of the forces along the chains is calculated below.

From (14) and (20), we observe an interesting feature of the solution—to this order, the
magnitude of the stresses do not attenuate along the characteristic lines. Moreover, the linearity
of the equation means that chains crossing one another do not interact or scatter. This is similar
to the 1D wave equation, where two signals that propagate at different speeds pass through one
another without interference. Thus, a stress chain initiating at a point on the boundary, should
travel unperturbed and unattenuated through the medium regardless of other chains that it might
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cross along the way. Since the forces are derived directly from the stresses (see below) they enjoy
the same properties. This result is in contrast to a common belief that force chains, even from
different sources, may bifurcate or join [20].

Pairs of chains originate from localized stress sources, diverging as they penetrate the
medium. Every such pair forms a ‘cone of influence’—the analogue of the cone of light in
the wave equation. The angle of the cone head can be calculated from the directions of the
characteristics as follows. The unit vector tangent to the characteristic line a = η, ζ is

!ta = 1
√

1 + (dya/dx)2

(
1,

dya

dx

)
, (23)

where dya/dx = αa/πxx and αa have been defined above. The angle between the chains can be
readily calculated:

θ = tan−1 2S

πxx + πyy

. (24)

The forces along the chains can be computed from the stress and the directions of the chains,
!f a = ¯̄σ · !t a. This gives for the force magnitude along the a chain

| !f a| = 1
√

1 + (αa/πxx)2

[(
σxx + σxyα

a/πxx

)2
+

(
σxy + σyyα

a/πxx

)2
]1/2

, (25)

where the stress in this expression is that given in the solution (14). This calculation makes it
evident that the forces are also concentrated along the stress chains. These observations are useful
for the analysis of many macroscopic properties, e.g. the statistics of force chains, as discussed
in more detail below.

3.2. The first-order equation

To obtain the equation for the first-order stress term we need to expand the fabric parameters in
equation (8) to linear order in the δij. For clarity, this is done in detail in appendix B. Using the
notations in appendix B, the equation for σ(1)

ij is

L(0)σ(1)
xy = K(1) + N (1)

∫ x (
gx − ∂yσ

(0)
xy

)
dx′ −

(
L(1) + M(1)

)
σ(0)

xy ≡ f (1)
xy . (26)

The right-hand side is a function only of known quantities—gradients of the force field !g, values
of the fabric parameters and expressions that depend on the zero-order solution σ

(0)
ij . Therefore,

it can be regarded as a known source term and, in analogy to the zero-order equation, it is fit to
name it f (1)

xy . A glaring feature of equation (26) is that the differential operator acting on σ
(1)
ij is

L(0)—exactly as in equation (10). This sheds light on the range of validity of this approach, as
will be discussed below.
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As an example, consider a constant fabric tensor with an oscillatory perturbation as follows

¯̄P =
(

1
√

3 (1 + ε sin ky)√
3 (1 + ε sin ky) − (1 + ε sin ky)2

)
, (27)

where ε & 1. Using the results in appendix B and a little algebra, the first-order equation is

L(0)σ(1)
xy = −2ε∂y

[
sin ky

(
∂y + 3∂x

)
σ(0)

xy

]
. (28)

The source term on the right drives the first-order solution and it gives rise to interesting effects
that will be discussed below. It should be noted that, since σ(0)

xy is constant along a characteristic,

the modulation of the source term is due to the variability of ¯̄P . This example will be used below
to test the quality of the approximation used in this approach.

3.3. Secondary chains and stress leakage

Whether the zero-order forces are physically realizable depends on their stability under the
introduction of the first-order term. For the effect of the correction to be observed at all, it must
not be washed out by the contribution of the external field and therefore !g is taken to be negligibly
small in the following.

The first-order solution to equation (26) should satisfy zero boundary conditions, since
all the boundary loading is taken care of at the zero-order. σ(1)

xy is determined directly by the
behaviour of the source term f (1)

xy . The spatial distribution of this term is analysed in detail in
appendix C and it is found that f (1)

xy is concentrated only along the stress chains. Now, the solution
to equation (26) can be written in terms of the Green function (16)

σ(1)
xy =

∫ η∫ ζ

G(η, ζ; η′, ζ′)f (1)
xy (η′, ζ′) dη′ dζ′. (29)

Therefore, every source point in (26) ‘propagates’ along the local characteristics η and ζ that
emanate from this point. Imagine a pair of zero-order stress chains originating from a point on
the boundary (xb, yb). The values of the constants Cη and Cζ that define these characteristics
are determined from (21) using this point. Consider a particular point A = (x0, y

η(x0)) along,
say, the η-chain (figure 2). The magnitude of f (1)

xy at this point is a source for two secondary
chains of diminished magnitudes, linear in the δij. The value of Cη at A is the same as along the
entire main η-chain and therefore the path of the secondary η-chain follows the main η-chain. It
follows that this corrects the magnitude of the stress along the main chain downstream from A.
Correspondingly, the stress at every point along the η-chain is modified by the superposition
of the first-order corrections from all the source points upstream from it. Since the first-order
correction is linear in the δij, whose mean vanishes, then this correction averages to zero away
from the point of origin of the main chain. Nevertheless, the stress fluctuations may give rise
to an overall increase or decrease the magnitude along any one particular chain. The extent
to which this is significant depends on the spatial correlations of the δpij. For example, if the
fluctuations of the fabric parameters are uncorrelated then the magnitude of the stress at point A
is the zero-order value plus the following superposition,

/σij(x0, y0) ∼
∑

( all points
upstream from A)

∑

kl

aklδkl, (30)
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Figure 2. Two main zero-order stress chains are shown, spanning a ‘cone of
influence’ between them. These chains act as sources for the first-order stress
terms, which propagate into the cone of influence as secondary chains. Two
arbitrary source points are shown to illustrate this effect. The magnitudes of the
secondary chains may have either sign and they are reduced by a factor linear
in the δij relative to the zero-order chains (but they are exaggerated here for
visualization).

where the akl are constants. If there are no correlations in the δkl, the fluctuations of this sum
increase as the square root of the length of the chain from its inception point to A. Different
correlations in the fabric parameters would give rise to different dependence of the fluctuations
on the length of the chain. Thus, the stress magnitudes along it may increase or decrease slowly.
The same rationale holds for the main ζ-chain, which is modulated by the secondary ζ-chains
that it gives rise to.

The above is only one effect of the first-order correction. The source at point A also gives
rise to a secondary chain in the ζ-direction (see figure 2). The value of Cζ along this chain is
Cζ = πxxy

η(x0) − αζx0 = Cη − 2Sx0. In this approximation, this secondary chain runs parallel
to the main ζ-chain (although in reality it might be only roughly parallel, see discussion below)
and, most importantly, it runs into the cone of influence between the two main chains. Point A
is but one example—since every point along the η-chain acts as a source then the entire main
chain sheds a continuous first-order field into the cone of influence. Similarly, so does the main
ζ-chain. Consequently, at every point within the cone of influence the stress is a superposition
of two first-order stresses originating at two specific points on the main chains, e.g. point B in
figure 2. Since the correction is linear in the δij then the stress field within the cone of influence
fluctuates around zero average with a small magnitude.

This discussion leads to an interesting conclusion. Since every point along the η-chain sends
a secondary chains only into the cone of influence then all the first-order field must be confined
to this region. Thus, to this order, the stress outside the cone of influence remains identically
zero. Recent analysis [19] shows that this conclusion goes beyond the current approximation
and is valid to media with general fabric tensors.
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4. Many-chain and extended solutions

The above analysis offers possibilities beyond the force chains solutions. To illustrate its potential,
consider the stress response to an extended boundary load. The corresponding boundary data are
functions Uij and Vij that are spread over a significant length of the boundary. The terms localized
and extended are relative, depending only on measurement resolution, and it is in this sense that
extended loads are considered. The analysis of such boundary data is made straightforward by
the linearity of equation (10). Let us represent the functions Uij and Vij as sums over localized
contributions (relative to the resolution of the measurement), e.g. in the form

Uij(y) =
∑

m

Ũij,m(y − ym); Vij =
∑

m

Ṽij,m(y − ym), (31)

where ym are discrete points distributed along the boundary, around which Ũij,m(y − ym) and
Ṽij,m(y − ym) are localized. The number of such points can be either finite or infinite and,
correspondingly, so can be the sum in (31). The linearity of equation (10) means that the solution
for the stress field is a superposition of the individual chain pair solutions that emanate from
each ym. For example, consider the case study

Uij(y) =
∑

m

aij,m e−(y−ym)2/2/2
m; Vij = 0, (32)

where aij,m are the coefficient of such an expansion. A load source at ym sends a pair of chains
into the medium along characteristics of constant values Cζ

m = Cη
m = πxxym and, from (22), the

equations of these lines are

ya =
(

ym +
αa

πxx

x

)
. (33)

Using expression (20), the solution is the following superposition of non-interfering stress chains

σ
(0)
ij (!r) = 1

2

∑

m

aij,m

[(
1 +

πxy

S

)
e−(y−yζ)2/2/2

m +
(

1 − πxy

S

)
e−(y−yη)2/2/2

m

]
. (34)

Visual evidence for this type of solutions, albeit tentative (see discussion in the concluding
section) can be found in several reports [4].

A distinct advantage of having an analytical multi-chain solution is that it opens possibilities
for a range of explicit calculations. For examples, it can be used to investigate the mechanical
behaviour due to given distributions of boundary loads, it can be used to analyse the statistics
of spatial force distributions in the material, etc. For illustration, given a particular form of the
boundary data, the stress–stress correlation function is

C(0)
σσ (!r′) = 1

LxLy

∫ Lx

0

∫ Ly

0
σ

(0)
ij (!r)σ(0)

kl (!r + !r′) d!r

= 1
4

∑

m,n

akl,maij,n

[(
1 +

πxy

S

)
e−(y−yζ(x))2/2/2

m +
(

1 − πxy

S

)
e−(y−yη(x))2/2/2

m

]

×
[(

1 +
πxy

S

)
e−(y+y′−yζ(x+x′))2/2/2

n +
(

1 − πxy

S

)
e−(y+y′−yη(x+x′))2/2/2

n

]
. (35)
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The form of this function represents a signature of the force chain network, if there is
one, and can be used to distinguish between solutions with different statistics and, in particular,
between force chain solutions and the more uniform solutions of elasticity theory. Expression
(34) also makes it possible to compute force statistics, a quantity that is amenable to direct
experimental measurements. For example, consider a section within the material, made parallel
to the y-axis at some value of x. The local force fluctuates as a function of y and a useful
characteristic of these fluctuations is the force–force correlation function

Cff (x, y′) = 1
Ly

∫ Ly

0

¯̄σ(x, y) · !ex
¯̄σ(x, y + y′) · !ex dy, (36)

where !ex is a unit vector in the x-direction and Ly is the length of interest. This function can be
evaluated by substituting for the expressions for ¯̄σ(x, y) and ¯̄σ(x, y + y′) directly from (34). It
represents the force–force correlation along the section. For SD systems this function should be
statistically independent of x for all x & Ly min(αa/πxx). These examples illustrate the potential
of the analytic many-chain solution. A detailed analysis of the stress statistics is beyond the scope
of this exposition and will be reported elsewhere.

5. Discussion and conclusion

To conclude, this paper presents new theoretical developments in 2D SD packs of grains. It has
been shown that the field equations, which include a previously derived stress–structure relation,
can be decoupled into independent equations for the three stress components. The equations are
integro-differential and hence difficult to solve in closed form. Instead, they have been analysed
for systems whose coarse-grained fabric tensors can be described by small fluctuations about a
macroscopic volume average. For these systems, it is possible to write the equation for the linear
correction to the stress field and analyse it in detail.

The zero-order solution, which corresponds to a constant fabric tensor, has been investigated
in some detail. To this order, the response to a localized stress source is a pair of stress chains
emanating from it. Due to the linearity of the equations, the response to a collection of localized
sources is a superposition of such pairs of chains. The magnitude of the stress is concentrated
along a chain and it is proportional to the magnitude of the load source. The trajectories that the
chains take and the opening angle between members of the pairs have been derived as functions
of the fabric parameters. The stress chains give rise to forces that are concentrated along the
same chains and it is therefore natural to interpret them as the continuous representation of the
force chains that are observed frequently in granular systems. The forces along the chains have
been found explicitly in terms of the boundary loads and the continuous stress field.

The stability of the zero-order chain solutions under the introduction of the first-order term
has been investigated. It has been shown that the source term of the first-order equation is strongly
concentrated along the zero-order chains. One important implication of this result is that the first-
order solution modulates the magnitude of the stresses along the chain in a perturbative manner.
The mean of the modulation vanishes for long chains, but the fluctuations from chain to chain can
be quite large. Therefore, although the mean stress along a chain is the zero-order value, the stress
fluctuations increase or decrease down the chain in a way that depends on the spatial correlations
of the fluctuations in the fabric parameters. For example, for uncorrelated fluctuations of the
fabric parameters, the fluctuations of the stress down the chain of length l increase as

√
l.
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Another implication of the spatial distribution of the first-order source term is that every
pair of stress chains ‘leaks’ a first-order fluctuating stress field into the cone of influence between
them. The spatial mean of this field vanishes and, unlike the magnitudes along the chains, its
fluctuations remain small. It has been shown that, except for effects of the external fields !g, the
zero- and first-order terms cannot give rise to any stress outside the cone of influence. If this
conclusion can be extended to more general systems then it has very significant implication on
the spatial distribution of the stress field and its statistical properties.

It is important to discuss the range of validity of the approach taken here.A glaring feature of
the first-order equation (26) is that the left-hand side hyperbolic operator is L(0) and therefore that
it does not change the direction of the characteristic lines. This is a limitation of the approximation
because a local fluctuation in the fabric tensor should also modify the characteristics orientation.
Indeed, it is known that a continued expansion in powers of the δij does not converge to the
correct solution [20]. Nevertheless, for small perturbations, this approach approximates well the
corrections to the zero-order solutions in several aspects: it explains the change of the magnitude
of the stresses along the characteristics, it explains the ‘shedding’ of secondary chains into the
cone of influence, and it predicts the vanishing of stresses outside these cones. Note that the cones
of influence discussed here are not necessarily confined by straight lines but rather by pairs of
meandering characteristics. Moreover, the zero average of the fabric parameters on the granular
scale ensures that the characteristics fluctuate around the predicted main paths, determined by
〈pij〉. Therefore, the approximation to first order, while failing to predict the exact meandering
of the characteristics around the mean paths, is still useful for quantitative predictions for small
fluctuations.

As a test of these results and their range of validity, an exact numerical solution of the
stress equations (2) was carried out by Professor M Gerritsen for the fabric tensor given in (27).
Applying a narrow Gaussian loading σxy at the boundary, the full solution for the stress field has
been computed for two perturbations, ε = 0.1 and 0.25. The solutions are plotted in figure 3.
The solution indeed validates the periodicity that the source term of equation (28) gives rise to.
Moreover, it establishes that: (i) the characteristics fluctuate about the zero-order straight lines;
(ii) that a cone of influence exists outside of which no stress propagate; (iii) the characteristics
leak low-amplitude secondary chains into the cone of influence. Even when ε is as large as 0.25
(figure 3(b)) the deviations of the path fluctuations from the straight line are relatively small.
Thus, the numerical solution gives evidence not only to the usefulness of this approximation but
also that some of the predictions hold well beyond the first order.

The analysis presented here clarifies an apparent misconception in the literature. The
directions of the stress chains have nothing to do with the directions of the principal axes of
the stress tensor. Ultimately, this is because the directions of the characteristics are determined
by the local fabric tensor and not by the stresses. The entire boundary stress is supported by
the characteristics, not only its principal axes. This can be understood clearly for the case of a
constant external field !g. Applying a stress at the source such that it is given in principal axes,
say σxy = 0, then σxy remains zero along the characteristics, regardless of the its direction. This
direction need not coincide with any of the original principal axes. Moreover, it can be seen from
the solution found above that only a non-constant external field can rotate locally the principal
axes, namely, induce a non-diagonal component in the stress tensor through a finite source term
f (0)

xy "= 0. However, even if this happens, there is no reason for this term to align any of the stress
axes in the direction of the characteristic.
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Figure 3. The full numerical solution for the stress response to a localized
Gaussian load σxy at (x, y) = (0, 0) (courtesy of Professor M Gerritsen). The
fabric tensor has the form given in (27) with a periodic perturbation given by
k = 1, ε = 0.1 (a) and ε = 0.25 (b). These full solutions demonstrate the effects
of the perturbation—the characteristics fluctuate about the zero-order straight
lines, making a ‘cone of influence’, the stress magnitudes change slowly along
the characteristics, and secondary stress branches ‘seep’into the cone of influence.

At the zero-order, force chains exhibit two features: (i) forces do not attenuate along chains
and (ii) on crossing, chains pass through one another without change in shape or direction, much
like single solitons. The first feature starts to deteriorate with introduction of perturbations, as
evidenced in figure 3, but the deterioration is gradual. The second feature remains true beyond
the first order. This is due to the linearity of the equations, which allows for the superposition of
boundary loads. These results provide understanding on the interactions between force chains
beyond the common belief in the community that force chains can scatter from one another
on incidence or join together [19]. This belief has led to models that assign the force chains
random, or quasi-random, directions at every contact point along their paths. Such models give
rise wrongly to parabolic chain trajectories—another manifestation of the difference from the
hyperbolic chain behaviour.

These results provide a way to test experimentally which description of the stress field is
more suitable. If chains scatter from one another then they should do so on every intersection. But
scrutiny of the experimental images of visualized force chains, e.g. in [4], lends tentative support
to isostaticity theory—force chains do appear at times to pass through one another. Additionally,
the experimental observations seem to exhibit small attenuation before they eventually terminate.
It is important to remember, however, that the analysis carried out here holds for marginally rigid
(isostatic) states, while most measurements are made on granular systems that are not exactly so.
Rather, the images of force chains in the literature have been taken from granular systems whose
mean contact numbers, z, were normally higher than the marginal rigidity value zc. As discussed

New Journal of Physics 9 (2007) 160 (http://www.njp.org/)

http://www.njp.org/


16 DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

elsewhere [14], such systems are probably only partly isostatic, containing non-isostatic regions
whose sizes depend on the difference between the mean contact number and zc. In such regions,
the hyperbolic stress equations do not apply and one can regard these as elastic ‘defects’. Due to
the local high connectivity, chains incident on elastic regions disperse and their magnitudes fall
below a pre-assigned threshold, in which case they are deemed to have terminated. This leads to
a finite typical length of force chains, which gets shorter as z − zc increases. If two chains are
incident on a relatively small elastic region then it may seem that they scatter from one another,
while in fact they scatter from the non-isostatic defect. Moreover, if the connectivity between
the region and its environment is not much larger than the isostatic value then chain dispersion is
limited and they emerge from the region seemingly scattered in different directions. Therefore,
it is essential that tests of the results found here be done in systems constructed carefully close
to isostatic states. This can be done either by consolidating marginally rigid granular structures,
as done in [22], or by the application of controlled shears to existing packs to lower the mean
coordination number to values that are sufficiently close to zc.

The analytical many-chain solutions obtained here can be useful to analyses of the statistics
of force chain networks, a frequently observed phenomenon that has been discussed much
in the literature [23], but which has defied a good theoretical understanding (but see also
[24, 25]). It has been demonstrated that an analytical many-chain solution can be used to
obtain explicit expressions for the stress–stress and force–force correlations in the system. An
in-depth investigation along these lines, taking into considerations the limitations of the first-
order approach, is under way and will be reported elsewhere [26]. Such statistical analyses can
provide a basis for predictions that can be tested experimentally.

The discussion of the many-chain, and more extended, solutions highlights an issue that has
no analogue in elastic materials. Pressing with a force Fx on a flat plate of length L along the x = 0
boundary of the half-plane material described in the text, it is traditional to specify the boundary
pressure Fx/L. This is because in conventional elasticity theory the stress field disperses away
from the boundary and force fluctuations along the boundary blur out. But in SD systems they
do not! The hyperbolic nature of equation (9) propagates such fluctuations undisturbed into the
material. This suggests that care should be taken in the specification of the boundary loads. Since
the boundary of a granular pack is never flat then the plate presses on protruding grains differently
than on their neighbours. These locally elevated forces act as localized load sources and give
rise to pronounced chains. If the typical distance between such sources along the boundary is
larger than the scale of resolution, or interest, then the particular distribution of chains is more
significant than the mean pressure. It appears that many experimental observations of force
chains fall within this category, in particular, experiments where measurements are on scales
of single grains. A detailed discussion of the effects of measurement scales will be presented
elsewhere [26].
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Appendix A. The decoupled stress equations for the special cases pij=0

A.1. pxx = 0, pyy "= 0, pxy "= 0

In this case, equation (3) relates σxx directly to σxy and, upon substitution into equation (1),
we obtain a first-order differential equation for either of these variables. The solutions of those
equations are straightforward. For example, the equation for σxy is

∂x(rσxy) + ∂yσxy = gx, (A.1)

where r ≡ 2pxy/pyy. The zero-order solution for r = constant is obtained by defining a
transformation to new variables u such that ∂u = r∂x + ∂y. This can be done by the substitution

(
u

v

)
=





πyy

2πxy

1

1
−πyy

2πxy




(

x

y

)
. (A.2)

Under this transformation

σxy =
∫ u

gx(u
′, v′)du′ + φ(v), (A.3)

whereφ(v) is an arbitrary function to be determined by the boundary data. The first-order solution
for small δr = r − 〈r〉 is

σxy =
∫ u

gx(u
′, v′)du′ + φ(v) + ψ(v)e−δru, (A.4)

where ψ(v) is again arbitrary. From this it is possible to obtain the solution for σxx, using equation
(3) and the solution for σyy from equation (2).

Now, the stress field equations are symmetric under interchange of x and y everywhere and
correspondingly gx with gy. Therefore, upon this transformation, the above analysis becomes
also applicable to the special case pyy = 0, pxx "= 0 and pxy "= 0.

A.2. pxx "=0, pyy "= 0, pxy = 0

This case can be regarded as a rotation of the local coordinates so as to align along the principal
axes of the fabric tensor. The stress equations now give two coupled first-order differential
equations for σxx and σyy. One is equation (1) and the other is

∂xσxy − ∂y(qyyσxx) = gy, (A.5)

where qyy ≡ pyy/pxx. Note that since the determinant of the fabric tensor is negative then qyy < 0.
On differentiation of equation (1) with respect to x, differentiation of equation (A.5) with respect
to y, and subtraction of the two, we get a second-order differential equation for σxx

(
∂xx + ∂yyqyy

)
σxx = ∂xgx − ∂ygy. (A.6)

To zero-order in the fluctuations of the fabric tensor, this equation can be solved straightforwardly,
yielding two characteristic lines x ± y/

√−qyy. Stress solutions propagate along these lines,
exactly as discussed in the text for σxy. Substituting the solution for σxx into equation (1) gives a
first-order differential equation for σxy, which can be solved straightforwardly. Substituting both
these solutions into equation (4) then gives the solution for σyy.
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Appendix B. The expansion of equation (8)

Using the notations in the text, let us define the following operators.

L ≡
∑

ij

pij∂ij = ¯̄P : ¯̄H,

M ≡ 2pxx

[
∂xqxy∂y + ∂yqxy∂x

]
,

(B.1)
N ≡ pxx

[
∂xqyy∂y + ∂yqyy∂x + ∂xyqyy

]
,

K ≡
(
pxx∂xgy + pyy∂ygx

)
.

In the first of these expressions, ¯̄H is the Hessian, defined in the text. In terms of these, equation
(8) for σxy in the text reads

(L + M)σxy + N
(∫ x

∂yσxydx′
)

= K + N
[
φ(y) +

∫ x

gxdx′
]

, (B.2)

where the function φ(y) is an arbitrary constant of integration that is introduced here for
completeness, but which plays no part in the analysis. Let us expand these operators in the
small fluctuations of the geometric parameters,

pij = πij(1 + δij). (B.3)

The zero order of these operators are, respectively,

L(0) =
∑

ij

πij∂ij = ¯̄& : ¯̄H,

M(0) = 0,

(B.4)
N (0) = 0,

K(0) = πxx∂xgy + πyy∂ygx.

The first order are

L(1) =
∑

ij

πijδij∂ij,

M(1) = 2πxy

[
∂x

(
δxy − δxx

)
∂y + ∂y

(
δxy − δxx

)
∂x

]
,

(B.5)
N (1) = πyy

[
∂x

(
δyy − δxx

)
∂y + ∂y

(
δyy − δxx

)
∂x + ∂xyδyy

]
,

K(1) = πxxδxx∂xgy + πyyδyy∂ygx.

Expanding now both sides of (B.2) to first-order in the δij, the zero- and first-order equations for
σxy are

L(0)σ(0)
xy = K(0), (B.6)
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and

L(0)σ(1)
xy + L(1)σ(0)

xy + M(1)σ(0)
xy = K(1) + N (1)

∫ x(
gx − ∂yσ

(0)
xy

)
dx′. (B.7)

It can be verified by inspection that these equations can be written in the form

L(0)σ(n)
xy = f (n)

xy , n = 0, 1, (B.8)

where

f (0)
xy ≡ K(0), f (1)

xy ≡ K(1) + N (1)

∫ x (
gx − ∂yσ

(0)
xy

)
dx′ −

(
L(1) + M(1)

)
σ(0)

xy . (B.9)

The source terms f (n)
xy depend only on known quantities: the fabric parameters, the gradients

of the external fields and, in the case of f (1)
xy , also on σ(0)

xy . For example, the zero-order source
terms are

f (0)
xx =

(
pxx∂x + 2pxy∂y

)
gx − pxx∂ygy, f (0)

yy =
(
pyy∂y + 2pxy∂x

)
gy − pyy∂xgx. (B.10)

Repeating this analysis for the other two stress components, it can be shown that they are
governed by exactly the same hierarchy of equations, only with different source terms.

Appendix C. The spatial distribution of the source term f (1)
xy

The spatial distribution of the source term in equation (26) determines the first-order correction
to the force chains of the zero-order solution. To prevent the external field from washing out the
effect of the perturbation, the field is taken to be constant and no body forces are assumed. This
leaves for consideration only the terms linear in σ(0)

xy and terms linear in
∫ x

∂yσ
(0)
xy dx′. The former

concentrates along the main chains, but what is the spatial distribution of the latter? To answer
this question, recall that the zero-order solution can be written in terms of two independent
functions, each corresponding to a characteristic line:

yη = Cη +
πxy + S

πxx

x, yζ = Cζ +
πxy − S

πxx

x, (C.1)

where S =
√

−det ¯̄& is real, as discussed in [14]. Because the zero-order stresses propagates
along the characteristic lines we can write the solution in terms of two functions, F(y − yη) and
G(y − yζ). The following relations then hold true:

∂yF = − πxx

πxy + S
∂xF, ∂yG = − πxx

πxy − S
∂xG. (C.2)

Using (B.9) and (C.2), we can evaluate explicitly the integral
∫ x

∂yσ
(0)
xy dx′ = −πxx

[
F(y − yη)

πxy + S
+

G(y − yζ)

πxy − S

]
, (C.3)

and therefore the entire source term f (1)
xy . Since the integral can be written as a function of F and

G alone then, like these functions, it is concentrated on the characteristics. It follows that except
for contributions from variations in the external field !g and from body forces, the entire source
term vanishes away from the zero-order stress chains, as stated in the text.
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