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Granular solids transmit stress as two-phase composites1
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A basic problem in the science of realistic granular matter is the plethora of heuristic models of the stress field
in the absence of a first-principles theory. Such a theory is formulated here, based on the idea that static granular
assemblies can be regarded as two-phase composites. A thought experiment is described, demonstrating that the
state of such materials can be varied continuously from marginal stability, via a two-phase granular assembly,
then porous structure, and finally be made perfectly elastic. For completeness, I review briefly the condition for
marginal stability in infinitely large assemblies. The general solution for the stress equations in d = 2 is reviewed
in detail and shown to be consistent with the two-phase idea. A method for identifying the phases of finite regions
in larger systems is constructed, providing a stability parameter that quantifies the “proximity” to the marginally
stable state. The difficulty involved in deriving stress fields in such composites is a unique constraint on the
boundary between phases, and, to highlight it, a simple case of a stack of plates of alternating phase is solved
explicitly. An effective medium approximation, which satisfies this constraint, is then developed and analyzed in
detail. This approach forms a basis for the extension of the stress theory to general granular solids that are not
marginally stable or at the yield threshold.
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I. INTRODUCTION20

Granular matter (GM), whose ubiquity on Earth is second21

only to water, is essential not only to human society but also22

to most life on land. It is often regarded as a distinct form of23

matter because of its rich behavior, which is dissimilar from24

the conventional forms of matter. Of essential importance is25

understanding and predicting how GM transmits stress. A26

first-principles stress theory in these materials is essential in27

a wide range of disciplines: civil, structural, and chemical28

engineering; geology and earth sciences; and physics, as well29

as in technological applications of powders, soils, foodstuff,30

etc. It is also key to mitigation of hazards, from snow and soil31

avalanches to deflecting rubble-pile asteroids.32

The science of GM is at least 2200 years old. Indeed, what33

is regarded today as the oldest existing scientific publication,34

dating back to the third century BCE [1], involved GM. To an35

extent, this is attestation of the significance of this field. In the36

late 19th century [2] and in the early 20th century [3], work on37

GM was motivated by practical applications and was mainly38

done within the context of engineering. The last three decades39

saw an explosion of fundamental theoretical research, follow-40

ing the seminal work of Edwards [4–6]. Yet, in spite of this41

uniquely long history and intensified recent research activity,42
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no first-principles stress theory for such media exists. One of 43

the reasons is that, unlike any conventional continuum, GM 44

behaves as a combination of a solid and a fluid, and it trans- 45

mits stress very nonuniformly, often via stress chains [7–14]. 46

Another reason is that there is a range of phenomenological 47

and empirical models, utilized in engineering, providing the 48

impression that one can get away without a fundamental the- 49

ory. This situation is unsatisfactory, and, indeed, subsidence 50

and collapses of buildings and structures provide evidence 51

that, while useful, empirical models have serious limitations. 52

It has been suggested that one of the hurdles to constructing 53

such a stress theory is that GM is regarded paradigmatically 54

as a continuum endowed with some constitutive properties, 55

for which stress equations need to be developed. Since this ap- 56

proach has not been fruitful for many decades, it was proposed 57

that general GM needs to be regarded rather as two-phase 58

composites, with each phase satisfying different stress field 59

equations [15]. It is this view that I intend to explore in the 60

following. 61

Specifically, several arguments are presented in support of 62

the two-phase-composite idea, and a simple case of such a 63

composite is solved. A method to derive the stress from first 64

principle in such media, using an effective medium approach, 65

is formulated. To alleviate a difficulty in distinguishing be- 66

tween the different phases visually, which is important for 67

the purpose of imposing boundary conditions on the phase 68

boundaries, a quantitative stability parameter is developed, 69

which can also be used as a phase field parameter. To make 70

this paper self-contained, I also review briefly (1) the method 71

of identifying marginally stable granular assemblies and (2) 72

the current isostaticity stress theory (IST) for the marginally 73

stable state of GM, with a specific solution in two dimensions 74

(d = 2). 75
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The structure of the paper is the following. In Sec. II the76

state of marginal stability of GM is defined quantitatively in77

terms of the particle-scale mean coordination number (MCN).78

In Sec. III the existing stress theory for marginally stable GM79

is reviewed briefly, with more details, including the general80

solution in two-dimensional systems, given in the Supplemen-81

tal Material [16]. In Sec. IV I discuss the role of the marginally82

stable state as a critical point in the traditional sense, with83

a proper diverging response length, which is reflected in the84

increasing typical length of force chains. This state, which is85

also the yield threshold, is often referred to as a critical state86

in the engineering literature, albeit without the connotation87

that this term usually carries in physics. A thought experi-88

ment is then described, which illustrates clearly that GM is89

a two-phase composite, with one phase isostatic and the other90

elastic. The larger the concentration of the former phase the91

longer the response length. In Sec. V the construction of a92

general stress theory for such two-phase composites is dis-93

cussed. An example of a simple case, in which alternate-phase94

plates are arranged in series, is analyzed, solved exactly, and95

used to illustrate a fundamental difficulty, which can be traced96

back to the assumptions of isostaticity theory. Then a possible97

extension by an effective medium method is described, and98

the difficulties posed by a more general theory are discussed.99

In Sec. VI a stability parameter is introduced, which makes100

possible a local quantitative distinction between the phases in101

finite granular regions. This parameter also enables a quanti-102

tative determination of the “distance” from the critical point.103

Finally, the results and some implications are discussed in the104

concluding Sec. VII.105

II. THE MARGINALLY STABLE STATE106

At the macroscopic, many-particle level, the marginally107

stable state is the (macro-)state at the yield threshold be-108

tween the fluid and solid states. It is also known as critical,109

marginally rigid, and isostatic state. The reason that this is the110

yield threshold can be traced to the particle level, at which111

the number of force-carrying interparticle contacts is such112

that the number of equations to determine the interparticle113

forces is exactly equal to the number of unknown force com-114

ponents that require determination. When there are too few115

such contacts, the medium is unstable and must rearrange116

under external forces. This state is marginally stable because117

any perturbation in the applied load or a particle’s position118

gives rise to contact breaking and to local rearrangement. This119

perturbs neighbor particles and so on. Thus, a perturbation120

of one contact can lead to a rearrangement of a significant121

portion of the granular assembly. Such a long-range response122

to a perturbation is the hallmark of a critical point, as will be123

discussed below.124

The difference between the numbers of unknowns and bal-125

ance equations to determine them is quantified by the mean126

coordination number (MCN), z, which is defined as the num-127

ber of force-carrying contacts per particle. The marginally128

stable state corresponds to a “critical” value, zc, which de-129

pends on the dimensionality, d , whether the particles are130

frictional or are frictionless, and whether they are perfectly131

circular, spherical, hyperspherical, or of other shapes. When132

z < zc, the medium is fluid and when z > zc it is solid.133

To determine zc, we need to consider d-dimensional many- 134

particle assemblies of N (� 1) rigid particles of convex 135

shapes. It is straightforward to extend the discussion to some 136

classes of nonconvex shapes and to compliant hard parti- 137

cles, but this would add very little insight and this issue 138

is better circumvented here. In the following analysis, only 139

fixed compressive boundary forces are presumed to act on the 140

granular assemblies—external force fields, including gravity, 141

are ignored. The justification for this is that given a static 142

structure of an assembly, the stress equations discussed below 143

are linear, which means that the effects of an external force 144

field can be superposed on the IST solution. 145

A. Frictional particles 146

Frictional particles experience d force components at each 147

contact point, which need to determined. Neglecting boundary 148

effects for very large assemblies, summing over the coor- 149

dination numbers around all particles, results in twice the 150

total number of contacts, Cd : Cd = Nz/2. There are therefore 151

dNz/2 unknowns. To be mechanically stable, each particle 152

must satisfy d conditions of force balance and one torque 153

balance condition for each of the d (d − 1)/2 axes of rotation. 154

The critical MCN must then satisfy the equality 155

d
zc

2
N =

[
d + d (d − 1)

2

]
N ⇒ zc = d + 1. (1)

This calculation can be found extensively in the literature. 156

B. Frictionless non-(hyper-)spherical particles 157

In this case the force must be normal to the tangent plane at 158

the contact point, and, therefore, the geometry determines the 159

direction of any contact force. This leaves only one unknown 160

per contact—the force magnitude. The number of unknowns 161

is then Cd = zcN/2. The number of equations is the same as on 162

the right-hand side of Eq. (1), and equating it with the number 163

of unknowns yields 164

zc = d (d + 1). (2)

C. Frictionless hyperspherical particles 165

An assembly of frictionless perfect hyperspheres, which 166

includes disks in d = 2, is often used in numerical simulations 167

because it is convenient for contact detection and contact force 168

transmission. However, not only is it difficult to reproduce 169

physically, but such an assembly is also degenerate in the 170

sense that balance of forces on every particle ensures auto- 171

matically balance of torques. Therefore, the torque balance 172

conditions are redundant for all particles, and only the Nd 173

force balance conditions must be satisfied. Since, for such 174

particles, the forces are also normal to the contact tangent 175

plane, there is only one unknown to determine at each of the 176

zcN/2 contact points. Equating unknowns and equations then 177

yields 178

zc = 2d. (3)

It should be commented that the values for zc, calculated 179

for all types of particles, incur boundary corrections of order 180
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O(N−1/d ), which have been neglected. These corrections will181

become relevant for the discussion in Sec. VI.182

III. CRITICAL STRESS TRANSMISSION183

AT MARGINAL STABILITY184

As mentioned, force chains are the conduits of stress and185

displacement perturbations, and the longer they are the further186

the response. In particular, in the marginally stable state the187

typical length of force chains is comparable to the system188

size, making this state the equivalent of a conventional critical189

point. This equivalence is key to understanding stress trans-190

mission in more general states of GM. It is therefore useful191

to review briefly the theory of stress transmission at marginal192

stability.193

Any continuum stress theory must satisfy the balance con-194

ditions:195

�∇ · σ = �gext (balance of forces) (4)

σ = σ
T

(balance of torques). (5)

In d dimensions, the first equation provides d conditions,196

the second d (d − 1)/2, and together d (d + 1)/2 conditions197

in total. Since the stress tensor has d2 components, further198

d (d − 1)/2 equations are required to determine it. These “clo-199

sure” equations need to be provided by constitutive relations.200

In elasticity theory, the closure is by St. Venant’s compatibility201

constraints on the strain tensor, augmented with stress-strain202

relations [17]. Such closure, however, is not appropriate for203

the marginally stable state. This is because the stress field is204

nothing but a continuum representation of the spatial distribu-205

tion of interparticle forces in the marginally stable state, and,206

since these forces are exactly determinable by the structure207

and are independent of any infinitesimal displacement that led208

to it, then the continuum stress cannot depend on the strain209

field. This is also evident from the fact that no elastic moduli210

are involved in the above discussion of the determination211

of those forces. It follows that the only relevant constitutive212

characteristics must be based on the local structure. The ob-213

servations of nonuniform stress transmission in GM via chains214

[7–14] further supports the idea that the equations cannot be215

elliptic and therefore cannot arise from strain-based constitu-216

tive relations. It was proposed then that the closure is by a217

stress-structure relation [18–21],218

M : σ = 0, (6)

in which M is a symmetric tensor that characterizes the lo-219

cal structure. Its determinant is negative, which results in220

hyperbolic equations, in contrast to the elliptic equations of221

elasticity theory. This gives rise to solutions that “propagate”222

into the medium along characteristic paths. Along these paths,223

which can be interpreted as stress chains, characteristic stress224

combinations are constant. The set of equations (5) and (6)225

are commonly called isostaticity theory. So far, the tensor M226

has been derived from first principles only in d = 2 [15,22–227

24]. Nevertheless, there is a range of empirical models for it,228

or leading to it, in d = 2 and 3, e.g., Mohr-Coulomb [25],229

Tresca [26], von Mises [27], and Drucker and Prager [28].230

The characteristics can be straight or curved and even bend231

backwards [24]. A brief outline of the solution of these equa- 232

tions in rectangular coordinates and an example of a solution 233

are given in the Supplemental Material [16]. It should be 234

commented that the first-principles theory holds for compliant 235

particles, as long as the MCN is zc and the compressed areas at 236

contacts are small compared to the particle sizes. Compliance 237

introduces corrections to the solutions of Eqs. (5) and (6), 238

which decay as the number of particles increases [29]. 239

The marginally stable state acts as a critical point in that 240

a small displacement of a particle can lead to the yield of 241

large part of the assembly [14,30–32]. The main descriptor 242

of this state is the critical MCN, zc, and the deviation from 243

this state can be parameterized by the difference z − zc. The 244

critical nature of the marginally stable state opens the door 245

to modeling GM in general, which is the subject of the next 246

section. 247

It should be commented in passing that, while it is tempting 248

to consider the typical length of the characteristic stress chains 249

as a descriptor of the long-range correlation, this similarity 250

holds only for uniform fabric tensors, M. This is because 251

stress chains straight in such systems and span the entire 252

system. However, when M is nonuniform, the stress along 253

the characteristics decays with distance and so do the effects 254

of local perturbations. There is some fundamental difference 255

between the force chains, observed in experiments with pho- 256

toelastic particles [11,33–37], and stress chains. The former 257

are observed only when above some threshold, and, therefore, 258

the definition of a force chain is not sharp to some extent. 259

In contrast, theoretical stress chains are defined uniquely and 260

unambiguously, given the fabric tensor M. 261

IV. GENERAL GM IS A TWO-PHASE COMPOSITE 262

While isostaticity is an established first-principles theory, 263

marginally stable states are rare in realistic static systems, re- 264

quiring specialized dynamics to generate them. The MCNs of 265

most solid granular assemblies, whether natural or manmade, 266

often exceed zc. The question is how to extend the isostaticity 267

stress theory to such media. To this end, it has been proposed 268

that, at least sufficiently close to the marginally stable state, 269

realistic GM must be regarded as composites comprising re- 270

gions of two phases: one is marginally stable and the other 271

is overconnected, in which z > zc [15]. The usefulness of 272

the two-phase composites picture can be illustrated with the 273

following thought experiment. 274

Consider a large assembly of elastic particles, e.g., rub- 275

ber balls, initially at a marginally stable state under some 276

infinitesimally small boundary forces. Under such loading, 277

the contact areas can be made much smaller than the small- 278

est ball diameter, and isostaticity theory provides the correct 279

solution for the stress field. Now, increase all the boundary 280

forces uniformly by a factor α = 1 + ε, with 0 < ε. When ε 281

is sufficiently small, such that it cannot bring even the closest 282

pair of particles into contact, the number of contacts remains 283

the same, and only their areas increase as they are compressed 284

slightly. In a very large assembly, this has been shown only 285

to introduce small corrections to the original solution, with 286

the corrections decaying with system size. As ε increases, 287

new contacts are made here and there, and the MCN starts 288

to increases: z = zc + δz. When δz � 1, the overconnected 289
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regions are small and isolated. A force chain incident on such290

a region “scatters” in the sense that its continuation is shared291

by more contacts than required for marginal stability. This292

sharing means that each of the forces emerging from this293

region is lower in magnitude. Setting the magnitude obser-294

vation threshold of force chains appropriately, the incident295

force chain effectively “terminates.” As α increases, more296

overconnected regions form, the typical length of force chains297

decreases, and with it the stress. This resembles strongly the298

behavior of traditional systems as they move away gradually299

from critical points. For example, increasing the temperature300

slightly above the critical point introduces regions of normal301

conductivity, or increasing the concentration of nonconduct-302

ing elements at the percolation threshold through an otherwise303

conducting system reduces the conductivity by generating304

nonconducting regions.305

Another effect of increasing α is that contact areas between306

particles in contact increases. When the size of such a contact307

becomes comparable to the size of either of the particles308

sharing it, this pair can no longer be regarded as two sepa-309

rate particles. As balls get squeezed together and the contact310

areas of sufficiently many reach this limit, the assembly can311

no longer be regarded as granular and is, rather, a porous312

medium, comprising an elastic solid phase and cavities or313

pores. Some models for computing stress transmission in this314

type of media exist [38,39], but discussing them is tangential315

to this presentation. Finally, at some large value of α, these316

voids are also squeezed out completely, and the system be-317

comes a continuous uniform elastic solid. The stress fields in318

such a solids are readily calculated by conventional elasticity319

theory.320

This thought experiment shows that there is a continuous321

spectrum of structures with the marginally stable critical point322

at one end and a perfectly elastic state at the other. General323

GM is on this spectrum sufficiently close to the former, before324

the appearance of porous media. In particular, where on this325

spectrum a granular solid exactly is depends on the difference326

δz = z − zc, which is tantamount to saying that it depends on327

the response length.328

It is clear that, in assemblies of particles that are not as elas-329

tic as rubber balls, other physical mechanisms may intervene330

before the porous medium state or the continuum are reached,331

such as particle fragmentation, phase transitions, etc. These332

are all ignored because they are irrelevant to the purpose of333

this thought experiment. Additionally, if the original particu-334

lates are made of nonelastic materials, the stress transmission335

in the final continuous phase need not satisfy the equations of336

elasticity theory. All these side issues notwithstanding, start-337

ing from a perfectly elastic final state is a useful first step338

toward a more general theory. The two-phase idea may also339

provide insight into the observation of two distinct sets of340

force chain networks in simulations of GM [40]. In any case,341

this conceptual picture suggests a strategy to extend the theory342

beyond the ideal marginally stable limit, and this strategy is343

discussed next.344

V. TOWARD A CONTINUUM STRESS THEORY345

OF GENERAL GM346

Field theories of two-phase composites are generally diffi-347

cult to construct except when the phases have a special spatial348

distribution. The main existing methods for arbitrary spatial 349

distributions are effective medium approximation, mean field 350

theory, and renormalization near critical points. Each of these 351

methods involves some special assumptions. Unfortunately, 352

none of these models can be applied directly to GM com- 353

posites because they are based on the assumption that the 354

two phases satisfy the same field equations and they differ 355

only by their constitutive properties. Example are mixtures of 356

two conducting materials, in which both phases obey Ohm’s 357

law, but have different conductivities; composites of elastic 358

materials, which are often presumed to obey the same stress 359

equations but with different elastic moduli; and mixtures of 360

dielectrics having electric-displacement fields relation of the 361

same functional form, but with different dielectric constants. 362

The two-phase GM problem is more difficult because the 363

phases differ not by their constitutive properties but by the 364

stress equations that they satisfy. This problem is exacerbated 365

by the fact that the elastic phase satisfies elliptic equations and 366

the marginally stable phase satisfies hyperbolic equations. 367

While the former can be solved under Dirichlet boundary 368

conditions, the latter can be ill-posed under such conditions. 369

Thus, much care is required even in posing the problem. 370

A. Isostatic-elastic pair of plates 371

To illustrate the complexity of the problem, it is useful 372

to start with a simple solvable structure in two dimensions. 373

Consider only the two parallel plates, I and II, sketched in 374

Fig. 1. Plate I is isostatic, occupying 0 < x < W1 and −∞ < 375

y < ∞, and plate II is elastic, occupying W1 < x < W2 and 376

−∞ < y < ∞. The boundary at x = W2, which also extends 377

to ±∞ in the y direction, is rigid and stress is not transmitted 378

between plates II and III. 379

The equations of both elasticity and isostaticity are linear, 380

given the respective constitutive properties, and it is sufficient 381

to consider a point loading applied to the leftmost plate at the 382

origin, σ (x = 0, y = 0). A more general loading is the super- 383

position of such point loadings. The full solution to the point 384

loading problem is detailed in the Supplemental Material [16]. 385

To summarize it, the stress field response in the marginally 386

stable region I, whose example structure tensor is chosen to 387

be uniform, for simplicity, M = (3 1
1 −1), consists of a finite 388

stress only along two straight stress chains. The gradients of 389

the stress chains are λ1 = 3 and λ2 = −1, and they follow 390

the characteristic paths. Along each path, the stress field is 391

a characteristic combination of the stress components that 392

originate from the source at (x = 0, y = 0). Outside these 393

paths, the stress is exactly zero. This solution superposed with 394

the uniform stress field due to the uniform loading on the 395

boundary, which is also detailed in the Supplemental Material 396

[16], 397

σ uniform =
(

σxx σxy

σxy σyy = 3σxx + 2σxy

)
. (7)

The value of the loading σyy must depend on the values of σxx 398

and σxy to satisfy the constitutive stress-structure relation (6). 399

The stress chains of the solution are incident on the bound- 400

ary between regions I and II, x = W1, giving rise to two point 401
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y

x

Elastic

W1 W2

I II III

3W

M
arginally stable

M
arginally stable

FIG. 1. A stack of alternating marginally stable and elastic
plates. A localized stress is applied at the boundary x = 0, generating
two stress chains that “propagate” along two characteristic paths.
The chain stresses apply two localized loads on on the strain-free
boundary at x = W1. The boundary at x = W1 deforms to trans-
mit this stress to the elastic plate. The stress response within the
elastic plate satisfies the elliptic equations of elasticity theory. The
stress response on the strain-free boundary at x = W2 is sketched.
Adding another plate of marginally stable medium at x = W1 + W2,
the stress solution within it is a superposition of the stress chains,
which emanate from every point along this boundary, such as the
two exemplified in the figure.

loadings on this boundary at y = −W1 and y = 3W1,402

σ 1(W1, 3W1) = σxx + σxy

4

(
1 3
3 9

)
,

σ 2(W1,−W1) = 3σxx − σxy

4

(
1 −1

−1 1

)
. (8)

The boundary condition at x = W1 must be considered403

carefully now. If this boundary is presumed to remain straight404

and independent of y, then the stresses at the points y =405

−W1, 3W1 along this boundary would not be transmitted to the406

elastic medium. Some boundary deformation is required for407

that. The problem is that isostaticity theory does not provide a408

way to predict this deformation because strain plays no role409

in it. Nevertheless, such a deformation will occur because410

the application of the load at (0,0) changes the structure411

wherever the stress is finite. This issue and its effect on the412

choice of this boundary condition are discussed in some detail413

in the concluding section, a discussion that touches on the414

assumptions underlying isostaticity theory. To summarize it415

here, since there is currently no theory to predict local struc-416

tural changes as a function of the local stress perturbation,417

the only way forward is to impose a boundary condition at418

x = W1 that transmits faithfully the stress from left to right. 419

The natural way to achieve that is to impose a deformation, 420

or strain, e, that satisfies the stress-strain relation in the elastic 421

medium, namely, σ (x = W −
1 , y) = C̆II e(x = W +

1 , y), with C̆II 422

the fourth-order stiffness tensor of the elastic medium in II. 423

Applying this boundary condition to the problem at hand, the 424

stress at the left boundary of plate II comprises two δ func- 425

tions, as sketched in Fig. 1, and, together with the condition 426

of a flat rigid boundary on the right of region II, make for a 427

well-defined formulation for the solution in the elastic plate. 428

Since the strain at, and therefore the distortion to, the left 429

boundary is known, a convenient way to solve for the stress 430

in this region is to first mapping conformally the physical 431

domain with the distorted boundary to a rectangle. Solve for 432

the stress in the mapped domain, using textbook methods [41], 433

and then transform the solution back to the physical plane. 434

Two such point-loading solutions are sketched in the figure. 435

For completeness, it should be commented that, when the 436

fabric tensor M is not uniform in the marginally stable plate, 437

secondary paths of lower stresses emanate from the main 438

characteristic paths, which reach the boundary at x = W1 at 439

different locations. These modify the boundary stress for the 440

elastic plate in a manner that can also be calculated from the 441

solution in the Supplemental Material [16] and can be treated 442

as a superposition of source points at x = W1. 443

B. A chain of alternating-phase plates 444

Next, consider a longer chain of parallel plate of alternat- 445

ing phases, by adding them to the right of plates I and II. 446

The first of this chain, III, is shown in Fig. 1. They have 447

different thicknesses and all similarly extend to ±∞ in the 448

y direction. Applying the same source load at (x = 0, y = 449

0), the stress response in plate I as well as its transmission 450

across the boundary at x = W1 are the same as for the pair 451

system discussed above. The boundary condition at x = W2 452

is straightforward to determine: since the marginally stable 453

medium in plate III is rigid, it is chosen to be flat. Then 454

the solution in II is the same as in the pair system and, 455

consequently, so is the stress at σ (x = W −
2 , y). This boundary 456

stress is transmitted to the medium in III at σ (x = W +
2 , y). 457

Assuming that the fabric tensor in III is the same as in I, 458

the conceptual “propagation” from two arbitrary source points 459

along the boundary at x = W2 is exemplified in Fig. 1. Each 460

such point plays the same role as the point load at (x = 0, y = 461

0). 462

A consistent set of boundary conditions for a chain of 463

2N such plates is then the following. The boundaries at 464

x = W2k (k = 1, 2, . . . , N/2), which transmit stress from the 465

2kth elastic plate to the (2k + 1)th marginally stable one, are 466

presumed rigid and flat, while the boundaries at x = W2k−1, 467

which transmit stress from (2k − 1)th marginally stable plate 468

to the 2kth elastic one, deform such that the strain generated 469

by the deformation matches the stress-strain relations in the 470

elastic part, σ (x = W −
1 , y) = C̆2ke(x = W +

1 , y). 471

C. Effective medium method: Possibilities and difficulties 472

The aim of this subsection is to outline an effective medium 473

approximation (EMA) approach for deriving the stress in a 474
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w

wx

Elastic

Marginally rigid
y

xy

x0

FIG. 2. A rectangular inclusion (light blue) in an otherwise
marginally stable medium (light brown). Stress chains (dark brown)
emanate from the point loading at (0,0) along two narrow character-
istic paths. The chain incident on the elastic inclusion deforms the
boundary slightly, “letting” the stress through and giving rise to an
intra-inclusion stress field that satisfies the linear elasticity equations.
The inclusion’s other boundaries are rigid. The inclusion “diffracts”
the stress, which reemerges into the marginally stable medium at a
much attenuated magnitude along wider paths (dark brown regions).

general GM composite, rather then develop it in full detail.475

EMAs are based on the assumption that one phase is suf-476

ficiently dilute, often as inclusions, within the other. In this477

approximation, one neglects the effect of the inclusions on one478

another. Consequently, the key ingredient in an EMA is then479

the solution for an isolated inclusion of one phase within an480

otherwise much larger medium composed of the other phase.481

By interchanging the roles of the phases, this approach can482

be applied close to either the marginally stable state or the483

purely elastic state. Analysis of a marginally stable inclusion484

in an elastic medium is straightforward: the marginally stable485

medium can be regarded as a rigid inclusion in a large elas-486

tic medium, for which solutions exist or can be found with487

standard elasticity theory [42].488

The opposite limit, of an elastic inclusion in a marginally489

stable medium, requires a careful consideration. While490

diffraction of hyperbolic characteristics from scatterers has491

been discussed in the literature [43], this is less relevant in this492

context than the stress developing within a finite inclusion. Let493

the medium occupy the half-space x > 0 and −∞ < y < ∞494

and the stiffness tensor within the inclusion be C̆inc. For clar-495

ity, assume again that its fabric tensor is spatially uniform;496

as mentioned, position-dependent fabric tensors, �∇ · M �= 0,497

lead to nonstraight chains, stress attenuation along them, and498

branching, all of which, although making the treatment more499

involved quantitatively, can be included without any concep-500

tual difficulty in the following approach. It is convenient to501

consider a rectangular elastic inclusion, as shown in Fig. 2.502

Consider a set of discrete point loadings on the boundary503

at x = 0, at intervals χi, with χi narrowly distributed around504

a mean value χ0. These act as sources, and from each one505

can trace two characteristic paths into the marginally stable 506

medium. The paths from one such source are shown in Fig. 2. 507

The characteristic stress component combination on each path 508

is determined by the solution described in the Supplemental 509

Material [16]. In the absence of the inclusion, the stress field 510

inside the medium, �0(x, y), consists of a network of stress 511

chains. This solution would be unaffected when no chain is 512

incident on the inclusion and the probability for this to happen, 513

p0, decreases with Wy/χ0, most likely as e−Wy/χ0 although its 514

exact functional form is immaterial for the present discussion. 515

When a stress chain is incident on the inclusion, which 516

is the case illustrated in Fig. 2, it provides a point load- 517

ing on the boundary of the elastic inclusion at x = x−
0 . As 518

illustrated in the alternating plates system, the way to trans- 519

mit the stress to within the inclusion is by posing that this 520

boundary is deformed into the inclusion such that the strain at 521

x = x+
0 satisfies σ (x = x−

0 , y = 0) = C̆ince(x = x+
0 , y = 0) = 522

σ (x = x+
0 , y = 0). Following the example of the system of 523

alternating plates, the boundaries of the inclusion, on which 524

no stress chain is incident, should be regraded as flat and rigid. 525

Given these conditions, the stress field inside the inclusion can 526

be calculated either analytically or numerically, using linear 527

elasticity. Again, if the calculation with the deformed bound- 528

ary is problematic, one can conformally map the inclusion 529

back to the original rectangle, solve for the intra-inclusion 530

stress in the mapped plane, and then conformally map this 531

solution back to the physical plane. A schematic illustration 532

of contours of equal-σ xx within the inclusion is also shown 533

in Fig. 2. This calculation then yields the stress distribution 534

along the rigid boundaries, which are then transmitted to the 535

rest of the marginally stable medium. This transmission must 536

follow also the characteristic paths, as sketched in the figure. 537

The “reemerging” stress paths are broad, corresponding to the 538

size of the inclusion and orientation differences between the 539

boundaries and the two characteristics. 540

As a consequence of force balance, the stress component 541

magnitudes within the widened stress paths are suppressed 542

to well below those of the original incident chain. Setting a 543

detectability threshold, as for force chains, the stress is likely 544

to drop below the threshold, and, to all practical purposes, the 545

incident stress chain effectively terminates at the inclusion. 546

The larger the inclusion, the wider the reemerging paths and 547

the stronger the suppression. Denoting the single-inclusion 548

stress field �1, the EMA stress field is 549

�EMA = p0�0 + (1 − p0)�1. (9)

Placing a second inclusion elsewhere gives rise to a similar 550

solution, �2. Since the inclusions are too far to interact, the 551

EMA stress field due to n such inclusions is 552

�EMA = pn
0�0 + (

1 − pn
0

) n∑
j=1

� j (�r − �r j ), (10)

in which �r j denotes the position of the jth inclusion. Increas- 553

ing the concentration of inclusions and/or their sizes, but 554

without violating the effective medium assumption, increases 555

the MCN, zc → z = zc + δz. An increase in the inclusion 556

concentration also increases the probability of incidence of 557

stress chains on them and effectively terminating. The con- 558

sequent shortening of the typical length of stress chains with 559
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increase of the MCN is indeed consistent with experimental560

observations [44,45]. This also makes the EMA consistent561

with the idea that the value of δz controls the response length562

near the marginally stable critical point. Using then δz as a563

measure of the proximity to the critical point, it is tempting564

to conjecture that the relation between the stress chain typical565

length, Lσ , and the “distance” from the critical point follows566

the conventional power-law form:567

Lσ ∼ δz−ν ; ν > 0. (11)

This form is consistent with experimental observations near568

the marginal stability point [46], but it depends on more than569

the typical length of stress chains. This is because nonuniform570

fabric tensors, in which �∇mi j �= 0, give rise to coupled char-571

acteristics ωi, which may lead to chains dropping below the572

threshold and terminating even if without incidence on inclu-573

sions [23,24]. These effects are not taken into consideration in574

(11), and to include them requires quantifying the dependence575

of this relation on the gradients of the fabric tensor M. Strong576

gradients could not only lower the prefactor in (11) but also577

increase ν, with each of these effects suppressing Lσ for a578

given δz. A full discussion of the effects of structure tensor579

inhomogeneity is beyond the scope of this work, but it offers580

an interesting line of future investigation.581

VI. IDENTIFYING THE PHASES582

IN THE TWO-PHASE COMPOSITES583

To implement the two-phase-composite idea, it is impor-584

tant to have a clear way to identify the boundaries between the585

phases. This is particularly important in view of the required586

careful treatment of the boundary conditions. Unlike in many587

traditional two-phase composites, such an identification is not588

straightforward because the phases are visually very similar.589

The only structural difference between the phases is their con-590

nectivities per particle or specific connectivities. The specific591

connectivity of a region � is defined as δz� = z� − zc,� , with592

zc,� the critical value of the MCN that makes the region �593

marginally stable and z� the actual MCN of the particles594

within �. This value is different from that of the infinitely595

large assembly, calculated in Sec. II, due to the boundary596

corrections, which are no longer negligible.597

A sketch of a finite domain, �, is shown in Fig. 3. It598

contains N� particles, of which NS are regarded as its surface599

and the boundary, ∂� (dark brown in the figure), between600

� and the rest of the assembly. Let us define a stability pa-601

rameter as the difference between the number of unknown602

force components to determine and balance conditions, per603

particle in �,604

J� ≡ (Nunknowns)� − (Nconditions)�
N�

. (12)

Dropping the subscript �, for brevity, the region is unstable605

and fluid when J < 0, marginally stable when J = 0, and606

stable and solid when J > 0. The specific connectivity and the607

stability parameter are equivalent for determining the phase608

because the number of unknowns is proportional to the num-609

ber of contacts. The calculation of the stability parameter of �610

is done as follows.611

FIG. 3. A finite domain � within a larger granular assembly. The
internal particles (light brown, particles labeled ‘I’) are surrounded
by a surface (dark brown, particles labeled “S”), regarded as its
boundary, ∂� , whose particles are in contact with external particles
(white, particles labeled “E”).

Within �, there are CII contacts between internal particles, 612

CIS contacts between internal and surface particles, and CSE 613

contacts between surface and external particles. The external 614

particles exert forces on � through αNS contacts with the 615

surface particles, with α = O(1). The premise is that all these 616

quantities can be extracted visually from �. In the following, 617

I focus on two-dimensional systems, for simplicity, but the 618

analysis can be readily extended to three dimensions. The 619

stability threshold depends on the particle surface friction and 620

whether they are spheres or not. These are discussed next case 621

by case. 622

A. Frictional particles in d = 2 623

In the calculation of the MCN of �, the contacts of the 624

internal particles are counted twice each, while the contacts 625

of the boundary particles with external particles are counted 626

only once. This yields 627

z = 2CII + 2CIS + CSE

N . (13)

The forces at the CSE contacts comprise the external loading 628

on � and are regarded as known boundary loading for the 629

purpose of determining the intra-� forces. These boundary 630

forces are also presumed to be balanced (otherwise the as- 631

sembly would not be static). The contacts CII and CIS transmit 632

two force components each, giving 2(CII + CIS) unknowns to 633

resolve within �. These are to be compared to the 3N balance 634

conditions. Defining pS ≡ NS/N , we then have 635

JA = 1

N [2(CII + CIS) − 3N ]

= z − 3 − CSE

N N

= z − 3 − αpS, (14)

corresponding to the critical point shifting to 636

zc,A = 3 + αpS. (15)
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B. Frictionless nondisks in d = 2637

Using the same definitions as above, the number of equa-638

tions is the same, 3N , but only the force magnitudes at the639

internal contacts are unknown, CII + CIS. Then640

JB = 1

N [(CII + CIS) − (3N )]

= z

2
− CSE

2N − 3

= z

2
− 3 − α

2
pS. (16)

The critical point in this case is at641

zc,B = 6 + αpS. (17)

C. Frictionless disks in d = 2642

The number of unknowns is the same as in case B, but all643

the torque balance conditions are redundant, leaving only 2N644

available equations. Therefore,645

JC = 1

N [(CII + CIS) − 2N ]

= z

2
− CSE

2N − 2

= z

2
− 2 − α

2
pS. (18)

The critical point in this case is at646

zc,C = 4 + αpS. (19)

Thus, in all three cases, the change to the infinite critical value647

is by adding αpS .648

The stability parameter J can be used to define a phase field649

parameter in mechanically stable granular assemblies, 
 ≡650

1 − H (J ), with H the Heavyside step function. 
 is unity in651

the marginally stable phase and vanishes in the overconnected652

phase. It can be used to develop phase-field simulations, in653

which it would determine the stress equations to use and654

where phase boundaries are. It is straightforward to extend655

the calculations of J to three and higher dimensions, using the656

same rationale.657

VII. CONCLUSION658

To conclude, this paper should be regarded as a step toward659

a continuum stress theory of general mechanically stable GM,660

which goes beyond marginally stable states and the yield sur-661

face. The proposition is that real systems should be regarded662

as comprising two phases: one marginally stable and the other663

overconnected. The conditions for marginal stability in large664

assemblies in arbitrary dimensionality and the first-principles665

formulation of isostaticity theory, including the explicit solu-666

tions to the stress field equations in d = 2, have been reviewed667

briefly. A thought experiment was described which supports668

strongly the feasibility of the two-phase picture. In particular,669

it showed that there is a continuous spectrum of system struc-670

tures that extends from the marginally stable state, through671

a general granular assembly and a porous medium, to a672

continuum uniform solid. To highlight the issues involved673

in deriving stress fields in two-phase systems, the problem674

was solved for a simple case: a stack of plates of alternat- 675

ing phase. This problem also highlighted the constraints on 676

the boundary conditions. The critical-point-like nature of the 677

marginally stable state has been used to extend the theory near 678

this state. Specifically, a variation of the effective medium 679

approximation (EMA) has been formulated for this problem 680

and analyzed. Finally, a quantitative stability parameter has 681

been defined, which helps with the difficult problem of identi- 682

fying the different phases and their boundaries within a given 683

granular assembly. This parameter can be used for developing 684

phase-field approaches to the problem. 685

Several points are worth discussing. One is the effects of 686

gradients of M on the stress chains typical length in the EMA 687

method. The criticality of the marginally stable state is be- 688

cause a small local displacement of a particle is likely to break 689

a contact, which destabilizes the local structure by definition. 690

This leads to local rearrangement, which causes another con- 691

tact to break and so on. The long-range rearrangement due to 692

a small local perturbation is the analog of a diverging response 693

length near traditional critical points. While it is tempting to 694

relate the rearrangement response to the stress and, in partic- 695

ular, to the typical length of stress chains, this relation holds 696

only in media with relatively uniform fabric tensors, M. This 697

is because, as mentioned in Sec. V, spatial gradients of mi j 698

give rise to secondary chains that split from the main chains 699

and siphon stress away from them. Consequently, the stress 700

attenuates along the main chain. The rate of this attenuation 701

depends on the gradients magnitude along the chain, and once 702

the stress drops below some observability threshold, chains 703

effectively terminate even though the medium is still ideally 704

marginally stable and the rearrangement response is still very 705

long range. This is another manifestation of the decoupling 706

between the stress and the strain in marginally stable media. 707

Another consideration enters this picture: isostaticity is a 708

continuum theory, and the EMA method requires an elemen- 709

tary volume over which the structure tensor is coarse grained. 710

This has two effects. One is that the gradients are milder 711

on the coarse-grained scale, and the other, that stress chains 712

cannot be thinner than the linear size of an elementary volume. 713

Both these effects counteract the shortening of the response 714

length and must also be taken into account in structurally 715

inhomogeneous systems. An investigation into this issue must 716

also be part of the further development of the general stress 717

theory. 718

Another subtle issue is the following. In the solution for 719

the uniform stress, (7), whose full derivation is in the Sup- 720

plemental Material [16], the σyy component of the boundary 721

stress was taken to satisfy the stress-structure relation imposed 722

by the local structure tensor, M : σ = 0, and it is therefore a 723

local function of σxx and σxy. This may seem strange because 724

one expects to be able to choose all the components of the 725

boundary stress at will. However, there is no inconsistency! 726

It has been shown that structure and the stress self-organize 727

cooperatively [47–49], namely, one cannot change without 728

a corresponding change to the other. Self-organization is a 729

fundamental phenomenon GM, at least if the settling follows 730

quasistatic dynamics. Thus, choosing a different value of σyy 731

at some point on the boundary should have the effect of 732

restructuring the contact network near that point, and that 733
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restructuring perturbation would propagate into the system as734

far as the stress response length. Such a self-organization has735

been discussed and quantified to some extent in the literature736

[47,48,50]. Yet there is no theory to predict the resultant mod-737

ified structure tensor due to an arbitrary stress perturbation.738

It is likely that the structure would be most strongly modi-739

fied close to the source of perturbation and unaffected very740

far from it, which means that gradients must develop. Once741

the structure has rearranged and the new structure tensor is742

known, the derivation of the stress field in the GM follows743

the same procedure that led to Eq. (7), albeit with coupling744

between the characteristics. Moreover, it is the inability to745

predict the structural response in marginally stable media to746

stress perturbations which necessitated the tailoring of the747

boundary conditions to describe stress transmission from a748

marginally stable to elastic medium.749

While the discussion in this paper focused on two phases750

in static GM, it is interesting to note that two phases have also751

been discussed in the context of dense granular flows: plug re-752

gions, which are clusters of particles moving rigidly together,753

and plug-free regions, in which the velocity gradients are finite754

[51–53]. It is possible that, upon settling, the plug regions have755

a higher tendency to become the overconnected regions. This 756

conjecture can be tested by measuring the correlation between 757

a presettling particle belonging to a plug and its postsettling 758

belonging to an overconnected particle. 759

Finally, there remain several hurdles in implementing this 760

theory in practical modeling of natural systems and engineer- 761

ing applications. These include, but are probably not limited 762

to, effective modeling of the constitutive fabric tensor M on 763

relevant length scales and determining the relative concentra- 764

tions of the two phases. More work is needed to address these 765

issues. However, the reward of such work cannot be overem- 766

phasized because a first-principles theory of real GM outside 767

the yield surface has the potential to improve significantly 768

predictability of models in a range of engineering disciplines. 769

Data sharing not applicable to this article as no 770
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