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A statistical theory of two-dimensional Laplacian growths is formulated from first principles. First,
the area enclosed by the growing surface is mapped conformally to the interior of the unit circle, gen-
erating a set of dynamically evolving quasiparticles. Then it is shown that the evolution of a surface-
tension-free growing surface is Hamiltonian. The Hamiltonian formulation allows a natural extension of
the formalism to growths with either isotropic or anisotropic surface tension. It is shown that the curva-
ture term can be included as a surface energy in the Hamiltonian that gives rise to repulsion between the
quasiparticles and the surface. This repulsion prevents cusp singularities from forming along the surface
at any finite time, and regularizes the growth. An explicit example is computed to demonstrate the regu-
larizing effect. Noise is then introduced as in traditional statistical mechanical formalism, and a measure
is defined that allows analysis of the spatial distribution of the quasiparticles. Finally, a relation is de-
rived between this distribution and the growth probability along the growing surface. Since the spatial
distribution of quasiparticles flows to a stable limiting form, this immediately translates into a predicta-
bility of the asymptotic morphology of the surface. An exactly solvable class of arbitrary initial condi-
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tions is analyzed explicitly.

PACS number(s): 68.70.+w, 81.10.Dn, 11.30.Na

I. INTRODUCTION

Growing surfaces in diffusion controlled and generally
Laplacian fields have been the focus of much attention re-
cently. These processes are very simple to formulate but
extremely difficult to analyze theoretically. Many exam-
ples of such growths can be found where the resulting
morphologies are very ramified and generally exhibit a
rich variety of patterns. Well-known cases are dendritic
growth and solidification in supercooled liquid, diffusion-
limited aggregation, electrodeposition, viscous fingering
in Hele-Shaw cells, growth of bacterial colonies on an
agar substrate, and many more [l]. The inherent
difficulty in understanding these processes analytically
stems from the characteristic instability of the moving
boundary, combined with screening competition of the
growing arms over the field. Consequently, the number
of theoretical predictions that relate to such processes is
surprisingly small compared to the large amount of exist-
ing phenomenological and numerical data.

There currently exist several variants of a renormaliza-
tion group approach [2], and more recently two such gen-
eric approaches managed to yield rather accurate values
for the scaling of the radius of gyration of several
growths [3,4]. Generically, in such approaches an itera-
tive procedure is carried out for the growth probability
density. These approaches assume the existence of a lim-
iting stable distribution with scaling properties and ana-
lyze the scaling exponent of the average mass with time
or scale. However, a full theory that starts from the fun-
damental equations of motion (EOM) and leads in a step-
by-step manner to predicting the full asymptotic struc-
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ture of the surface, without those assumptions, is yet to
be put forward.

Mostly due to conceptual and chemical simplicity,
most of the literature treats growth of such patterns in
two dimensions, and this discussion is no exception. I
focus here on this case mainly because it allows for an
elegant conformal formulation, which simplifies the for-
malism. Nevertheless, it should be stressed that the
essential features that are relevant to the present theory
can be applied to growth processes and evolving surfaces
in higher dimensions, as will be shown elsewhere [5].

Already in the forties [6] and more recently [7] it has
been proposed that in the case of two-dimensional growth
of a surface-tension-free boundary in a Laplacian field,
conformal mapping can be used to transform the problem
to the dynamics of a many-body system. This approach
converts the problem of solving a one parameter-
dependent partial-differential equation (PDE) to that of
solving a system of first order ordinary differential equa-
tions (ODE’s), with each ODE corresponding to an EOM
of one quasiparticle (QP) of the equivalent many-body
system. This set of ODE’s turns out to be strongly cou-
pled and nonlinear, making the problem still very difficult
to solve other than in special cases [7,8].

Thus this technique has found very little use in the
research community. Moreover, this elegant description
suffers from an even more acute problem. In most cases
(i.e., for most initial conditions) the EOM break down
after a finite time due to the inherent instability (of the
Mullins-Sekerka type [9]) of the surface with respect to
growth of perturbations on arbitrarily short lengthscales.
In the absence of surface tension, these develop into cusp
singularities along the physical surface, which correspond
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in the mathematical plane to zeros or poles of the confor-
mal map arriving at the unit circle (UC) at a finite time.
There have been some attempts to suppress this catas-
trophe by adding surface tension and using it to cut off
the short lengthscales in a renormalizable manner [10].
These approaches, however, seem to be somewhat ad hoc
in the sense that the procedure for cutting off the short
scales can be arbitrarily chosen. In other words, one can
introduce a phenomenological renormalizing procedure
for the surface-tension-dependent term in the EOM of the
physical surface, which readjusts the EOM of the singu-
larities of the map and prevents the breakdown. The
choice of the phenomenological term is arbitrary in a
sense and renormalization approaches are known to in-
troduce uncontrolled errors. A perturbative approach is
also difficult because an arbitrarily small surface tension
turns out to be a singular perturbation for the unregular-
ized system, which, for a small surface tension, makes the
surface’s evolution very sensitive to initial conditions
[11]. Another approach that has been proposed to
prevent formation of such cusps relies on a recent obser-
vation [12] that tip splitting reduces local values of high
surface curvature energy. It was therefore proposed that
the mathematical quasiparticles (QP) split when they
come too close to the surface, implying a field theoretical
description of the problem.

Another issue in this context, which is significant for
the purpose of the formalism presented here, is whether
the system can be described by a Hamiltonian structure.
It has been long known that this problem enjoys a set of
conserved quantities [13,14], but the usefulness of these
for integrating the EOM was not clear. This issue has
been recently addressed by this author [15] and it appears
that indeed the system enjoys a Hamiltonian formulation
that under a given condition can even be integrated, as
has been demonstrated for a specific family of initial con-
ditions.

In this paper, I try to lay the foundations for a full
theory of growth of such surfaces. The theory is con-
structed in five stages. (i) First the EOM of the surface,
which is generally a first order PDE, is converted into a
set of first order ODE’s for quasiparticles of a many-body
system, as mentioned above. (ii) A Hamiltonian structure
of the system is formulated. (iii) Taking advantage of the
existence of a Hamiltonian functional, I introduce the
surface contribution as simply another energy term in the
Hamiltonian. This term prevents occurrence of cusp
singularities and makes the formulation valid for all times
and for any initial condition. In the many-body Hamil-
tonian system, this term gives rise to an effective repul-
sion between the surface and the QP. This approach is
suited to anisotropic, as well as isotropic surface tension.
(iv) Next the master equation that governs the evolution
of the spatial distribution of the QP is formulated. This
distribution flows to a stable limiting form. At this stage,
noise is naturally introduced into the theory in a fashion
similar to traditional statistical mechanical theories. (v)
The last step consists of translating the spatial distribu-
tion of the QP into the statistics of the growing surface,
thus enabling us to analyze and predict from first princi-
ples the morphological features of the asymptotic pattern.

2953

II. FORMULATION OF THE PROBLEM
AND MAPPING INTO MANY-BODY DYNAMICS

The two-dimensional problem under study can be for-
mulated as follows. Consider a simply connected line
surface y(s) parametrized by an angular variable,
0=<s5<2m. On this boundary, the potential field ® is
fixed at a given value ®,. This field can represent an elec-
trostatic potential, a concentration field for diffusion con-
trolled processes, a thermal field, and much more. A
higher potential value is assigned to a circular boundary
of radius R , that is much larger than the size of the area
S enclosed by y. Assuming no sources, the field outside
S, @, is determined by Laplace’s equation,

Vio=0. (2.1

The surface is assumed to grow according to a constitu-
tive rule that relates the local rate of growth proportion-
ally to the local gradient of the field normal to the sur-
face,

v,=—Vo-i.

Being two dimensional, this process allows for an elegant
use of complex analysis to write a closed form evolution
equation [6,7,13]. First one maps the closed curve ¥ in
the { complex plane conformally to the unit circle (UC)
in a mathematical z plane:

§=F(z) .
In the z plane, the complex potential field is simply
®(z)=In(z/zy)
=In(|z|/|zq|)+i[arg(z)—arg(z,)] ,

where z, is some constant that is determined by the refer-
ence potential on the UC. So the complex field V& along
the physical surface is

3D(&)
&

where * stands for complex conjugate and the prime in-
dicates differentiation with respect to z. For the moving
surface, z—e” (0<s <2w), and therefore the actual
curve evolves according to

* .
—1

C(zF)

—Vo(f)=— [ (2.2)

dyis,t) _ . |dy*s,n |
o 3 (2.3)

Since this equation is obtained by monitoring only the
normal velocity of the boundary at each s, it does not
maintain the right parametrization with time. To correct
this, one has to allow for a tangential velocity, so that a
point can “slide” along the curve. This is essential for
the purpose of studying the evolution of the surface
through the dynamics of the map F. For the map to be
conformal, both F and its inverse must be analytic in z
outside the UC. But maintaining only the normal veloci-
ty spoils this analyticity because the components of the
gradient of the potential field are not analytic. Therefore,
if y(s,1) is to be described as the limit
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y(s,t)= lim F(z,t) ,

then the right hand side (rhs) of (2.3) needs to be aug-
mented. The augmented evolution equation for the sur-
face reads [7]

3,7(s,t)=—id,y(s,){198,7(s,)|

+ig[13,y(s,0)[ 2]} . (2.4)
The first term on the rhs represents the field gradient nor-
mal to the surface as before. The second term is obtained
through the demand that the rhs is analytic in z and
represents the tangential component of the velocity,
which causes the “sliding” of a point s along y. Al-
though mathematically important, this component has no
real physical consequence for the advance of the surface
since we can reparametrize the curve as we wish at each
time step.
One can write now the EOM for the map F, which
gives (2.4), but for the purpose of this presentation it is

2

more convenient to write the EOM of
F'(z,t)=dF(z,t)/dz:
aF’/atzi{zF’G} . (2.5)
dz

The form of F’ considered here is chosen to generally
consist of a ratio of two polynomials. It turns out that
one of the constraints on the map [12,15] is that these po-
lynomials are of the same degree so that the map should
preserve the topology far away from the growth, namely,
that lim, ,  F(z,t)= Az, where A is a space-independent
global scaling prefactor. This requirement amounts to
leaving the original boundary conditions at R, un-
changed. The map now is

N z—Z

F(Z»t):A(f)nI;Il P

n

(2.6)

n

The quantities {Z,} and {P,} represent the locations of
the zeros and the poles of the map, respectively. As dis-
cussed below, the number of each species N may actually
go to infinity by treating the local densities of these
species, but for the sake of clarity, I will discuss in this
presentation only discrete cases. Since the map and its
inverse are conformal, then these poles and zeros must be
confined to the interior of the UC that is mapped to the
interior of the growth. Thus the evolution of the surface
can now be expressed in terms of the dynamics of these
zeros and poles. By inserting the explicit form of F’ into
(2.5), rearranging terms, and then comparing the residues
on both sides of the resultant equation, we arrive at a set
of first order ODE’s for the location of the zeros and the
poles [7,12]:

: [
— 42 = = _=m
ANNZ,=2Z, G0+2m' Z 7. J
O Im2 T
=24 Z};{P}), 2.7)
. O
— 42 = _xm =P .
AXt)P,=P, GO+2m P —2Z. ] n (ZYHPY)
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where

0 =2 fI (1/Z,—PxNZ,—P,,)
"t s /2,202, —Z,)
N Qn N P,
Go= 3 2Z, +ml;ll'27 ;

m=1

and where I have adopted the convention that the primed
index indicates m'#n. From Egs. (2.5)-(2.7), one can
construct the evolution equation for InA4 (z). In the fol-
lowing, I will disregard the evolution of this scale factor,
which is unimportant to the main thrust of this presenta-
tion. The implication of this is that at each time step the
growth is in fact rescaled such that the prefactor is al-
ways 1. The locations of these zeros and poles can now
be considered as QP of a many-body system that follow
the trajectories of Eq. (2.7).

Thus the problem of the growing surface has been
transformed into the problem of the analysis of a many-
body system. These general EOM have been analyzed in
various limits [12] and for several particular initial condi-
tions [8,10]. Such an analysis is not the purpose here.
Rather, since the present aim is at a general theory, I
now turn directly to formulate the Hamiltonian of the
system.

III. HAMILTONIAN FORMULATION

The Hamilton form into which we wish to map the sys-
tem,

H=H({J};{0}),

is generally a function of new canonical complex vari-
ables that depend on the coordinates {Z} and {P}. First,
let me convince the reader that there is ground for a be-
lief in such a formulation. The first hint can be found in
the EOM of the surface (2.3) This equation can be slight-
ly changed to read

ay(s,t):_i s
ar Sy*(s,t)

where the spatial partial derivative has been replaced by
the 8 operator. This form, however, represents exactly
Hamiltonian description if y is interpreted as a field
(complex) variable and s plays the role of an energy func-
tional of ¥ [16]. Thus it appears that a Hamiltonian for-
mulation does underlie the physical process. With this
realization it is tempting to ask whether the addition of
the tangential velocity makes a difference to this con-
clusion. To show that this is not so, consider the EOM
(2.5). This equation can be interpreted as one of
Hamilton’s equations, where H =zF'G is a Hamiltonian
density and F’ is one of the conjugate variables. Using
the identity

(3.1)

3F"
at

ot
az

0Oz

=—1
aF"’

(3.2)

and combining with Eq. (2.5) immediately yields the rela-
tion
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3z _ _ 3(zF'G)

o e (3.3)

Again we have arrived at a Hamiltonian description: Eqgs.
(2.5) and (3.3) constitute the conjugate pair of Hamilton’s
relations if z is interpreted as the variable that is formally
conjugate to F'.

Translating the Hamiltonian back to the physical §
plane H(z)=H(¢), and rewriting the EOM for the sur-
face in the original coordinates, we obtain

 He=2mF=3 P, Z,
9 at ,21 F~Y&)—pP, FY&)-2Z,
(3.4)

Inspecting the EOM (2.7) immediately reveals that these
are the exact direct consequences of (3.4) when a contour
integral over 0H /3¢ is taken around a close neighbor-
hood of the location of the QP in the § plane. Hence it is
the contour integration of H that connects surface dy-
namics to the many-body formulation. Therefore, since
there is a Hamiltonian description that underlies the sur-
face dynamics, it makes sense that the system of the 2N
QP (i.e., of 4N degrees of freedom) is Hamiltonian too.
The construction of a Hamiltonian directly to the many-
body system has been recently carried out [15], where it
has been shown that under a given condition the Hamil-
tonian is even integrable. Indeed, such integrability has
been recently demonstrated explicitly for a class of arbi-
trary initial conditions. This class is generalized in the
Appendix.

It should be remarked at this point that the above dis-
cussion suggests that the formulation presented here can
be generalized to a continuous density of zeros and poles
as follows. Inspection of the EOM and the signs of the
residues in Eq. (2.5) shows that we can interpret the zeros
and poles as positive and negative charges, respectively.
Then the contour integrals in the plane that relate the
map’s evolution to the EOM of the charges can be re-
garded as Gauss integration around an area that contains
some distribution of charges. Since all we know is the
value of the integral over dH /¢ it can be attributed to a
continuous, rather than to a discrete, density of charges.
The result will be a first order ODE for the charge density
in this region. So by making the typical number of singu-
larities within such an area very large, we effectively pass
to the continuum limit. With this extension of the for-
malism, one can overcome quite a few difficulties that
stem from the finiteness of the number of the singularities
[17] and generally pass to a continuous field description
of the problem.

IV. INTRODUCTION OF SURFACE TENSION

So far I have considered a free boundary (i.e., without
surface tension) that evolves in an external Laplacian
field. I now turn to discuss the effect that surface tension
has on the growing process. Evidently, patterns that re-
sult from real growth processes do not entertain any
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cusps forming along the boundary. Depending on the
system, this is either due to some microscopic atomistic
cutoff scale, below which the above description ceases to
apply, or because there is a macroscopic surface energy
to be paid when the curvature of the surface increases.
Here I focus on the second mechanism for two reasons:
(i) The entire formulation presented here relies on the
continuous aspect of the surface and therefore makes it
cumbersome to treat atomistic cutoffs; (ii) many natural
growth processes can be shown to enjoy a continuum
description where the surface energy can be defined as a
function of a continuous curvature, which is bounded
along the surface.

Assuming then that there is a given surface energy that
has a smoothening effect on the boundary, the question is
what would this effect translate into in the context of the
many-body system? To answer this question, one should
first note that the radius of curvature that the QP
enhances along the surface increases with the distance be-
tween a QP and the boundary, namely, the closer the QP
is to the boundary, the sharper the distortion of the sur-
face. The sign of this effect depends directly on the
“charge” of the QP with protrusions corresponding to
zeros and indentations to poles. For example, for a rela-
tively isolated zero at

Z,=(1—8)', 8<<1,

the curvature at s, is K (sg)~1/8° (see Sec. V). There-
fore, the effect of surface energy that prevents too small
radii of curvature should be translated into preventing
the QP from coming too close to the boundary. From
this argument it follows that in the equivalent many-body
Hamiltonian system the effect of a positive surface ten-
sion must correspond to repulsion between the QP and
the inside of the boundary. It needs to be emphasized
here that only because we have a Hamiltonian formula-
tion available, the term “repulsion” can be used with any
physical meaning. The Hamiltonian structure makes it
possible to account for such effects in a natural energetic
context, while without it surface effects could only be in-
corporated by introducing an additional ad hoc term into
the EOM.

To prevent completely the cusps the repulsive potential
between the surface and the QP must diverge as their sep-
aration vanishes. It follows that in this case we can con-
sider the QP to be effectively confined to within a poten-
tial well that consists of an infinite wall (the surface
boundary).

Example. To demonstrate how this method regularizes
the growth let us consider the simple case discussed in
the Appendix. The initial conditions of this growth pro-
cess consist of N pairs of zeros and poles arranged
symmetrically on N rays. The EOM for this system (A3)
need to be augmented with the surface potential. The
choice of the model potential is at our disposal at this
stage (see a more detailed discussion on the surface po-
tential below). For the purpose of the present example let
us assume a form that gives rise to an arbitrary (negative)
power a of the distance between the QP and the UC.
The full EOM now become
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X

_1
N x

=y/x —H[1—2/N+(1+2/N)y/x]

+o,/(1—x)%,
) 4.1
— LYy s H (Ut y i) ro, /(=)
Ny

where o ,,0, are constants and the other notations are as
in Eq. (A3). An analysis of these equations shows that
the growth becomes uniform very quickly. In Fig. 1, 1
plot the resulting surface with and without the surface
term for a=1 and for three pairs of QP. Without the re-
gularizing terms, Fig. 1(a) shows the formation of cusp
singularities at t =0.2673 (arbitrary units). With the sur-
face terms, the growth is observed to settle into a uniform
process even at times that are orders of magnitude larger.
To demonstrate the uniformity of growth, I rescale the
area enclosed by the surface at each time step by A4 (1),
whereupon it can be seen that, asymptotically, the curves
at different times collapse on top of each other. These
processes have been run for times up to  =1000 in these
arbitrary units to check that the asymptotic form is stable
and does not change. Various different surface potentials
have been found to produce very similar results. A gen-
eral analysis of the dependence of the growth on the form
of the functional properties of the surface potential is not

intended here and is a subject for future research.
Thus with this regularization the above formalism of

N
1+Re 3

n=1

K(s,{Z},{P})= lim |F'|~

So if the Hamiltonian of the surface-free system was H,
then the new Hamiltonian becomes

Hy=H,+V(K(z,{Z},{P})), 4.3)

and the new EOM in the mathematical plane are derived
from the new Hamiltonian as before:

8F’/6t=—aa—{zF'G+ V(K(z(Z 4.4)
YA

BLAPINY

Since the potential V(K (z,{Z},{P})) should effect repul-
sion between the QP and the boundary, then the sign of V
is immediately determined. For example, the simplest
form that comes to mind for such a repulsive potential in
the mathematical plane is

Re{V(K(z,{Z},{P})}=0(2)[|F'|K(z,{K},{P})] .
(4.5)

The complex form of ¥ can be found from the demand
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dynamics of singularities has been practically extended to
hold up for ¢ — o, which has been heretofore one of the
main disadvantages of this general approach. The only
part that still needs to be clarified is whether the form of
the map can still be described by a ratio of polynomials
once the Hamiltonian is augmented by the surface term.
It is this author’s belief that this is so, albeit with the pos-
sibility of encountering a time-dependent, or even an
infinite, number of singularities, depending on the form of
the repulsive potential. A related approach has been con-
sidered recently, by Blumenfeld and Ball [12], where a
surface term was introduced in the EOM. Only in this
case, the proximity to the surface initiated production of
opposite charges (poles and zeros in pairs) that acted to
reduce the local curvature in front of an approaching
zero. I will just remark here that that approach opens
the door to a general interpretation of the field that is in-
duced by the boundary and which is felt by the QP. In
the presence of this field, particles can be spontaneously
created by vacuum fluctuations and annihilated by en-
countering antiparticles. This interpretation fits quite
naturally in the present formalism because a pole and a
zero do indeed annihilate upon encounter, as mentioned
already.

Let us now turn to discuss the form of the potential
term in more detail. This term must be a functional of
the curvature K, which, in turn, can be expressed in
terms of the locations of the QP in the z plane [12]

(4.2)

that this term is analytic outside the growth, which leads
to

1 z+z' dz’
V=—-I ——Re{V]— .
2 eli%ﬁ zt+e—z' etV z'

(4.6)
It is important to note that the surface tension o in this
formulation can depend on z, therefore allowing for an-
isotropic surface effects, e.g., as in crystal growth. The
reason for taking the potential term in the mathematical,
rather than in the physical, plane is that it is there that
the QP are moving and where they feel the effects of the
“wall” along the UC. Note also that the form in (4.5) is
easy to handle because it decouples naturally to a sum of
individual contributions of the QP:

Ref{Vyli=o0(2),
z
= 4.7)
Re{V(Z,)) o(DRe o,
Re{V(P,)}=— (z)Rez_zP
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FIG. 1. The evolution of the rescaled surface discussed in the
text and in the Appendix for N=3. (a) The unregularized sur-
face with o=0 at times t=0. (), 0.11, 0.22, and 0.267. The
surface develops cusps at 1 =0.2673. (b) The regularized surface
shown at times 1=0. ({), 3.0, 6.0, and 9.0. After rescaling, the
last three curves are indistinguishable and indicate a uniform
growth.

V. EFFECTS OF NOISE
AND A STATISTICAL FORMULATION
OF THE THEORY

The next, and probably technically the most difficult,
step toward a theory of growth involves including the
effect of noise. As is well known in growths governed by
Laplacian fields, the patterns that such processes evolve
into depend in a crucial way on the characteristics of the
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noise in the system. This noise can originate from many
sources: general fluctuations in the local Laplacian field,
discretization of the underlying background over which
the field is solved (lattice growth), discretization of the in-
coming flux in the form of finite size particles that stick
to the growing aggregate (e.g., off-lattice diffusion-limited
aggregation, electrodeposition, and similar processes),
etc. The noise can also be generally correlated in space
and in time. In the present formulation, one way to in-
corporate all these effects is to interpret them as simply
“smearing” the noiseless predetermined trajectories of
the QP in the mathematical plane. The interpretation en-
joys a new meaning now that we have a Hamiltonian
available. The existence of a Hamiltonian immediately
points to the existence of Liouville’s theorem in this sys-
tem, namely, that the distribution of the canonical vari-
ables in phase space is incompressible. Thus it is
straightforward to write down an EOM for the time evo-
lution of the distribution of the QP in phase space, and
consequently it can be possible to analyze its asymptotic
behavior. This exercise is currently being carried out by
this author and will be reported at a later time. Either
from such a calculation or via a phenomenologica] argu-
ment, one can devise a measure #(H ({Z},{P})), (for ex-
ample, the Gibbs measure e ”*) and calculate average
quantities weighted by this measure,

(X%ﬂ~fXMHUZHPDMWMW, (5.1)

where the partition function Z is
zZ= [wH({Z},(P})d"Zd"P .

Suppose that the Gibbs measure is indeed the relevant
measure for this purpose. Then the Lagrange multiplier
B, which in traditional statistical mechanics is associated
with the temperature, would correspond here to the
effective magnitude of the noise. This issue is also under
current investigation. I should only comment that this
approach should turn out to be equivalent to introducing
noise directly in the EOM (2.7), and that such an
equivalence should be possible to elucidate via an argu-
ment analogous to the fluctuation-dissipation theorem.

This formalism gives a well defined framework to de-
scribe the statistics of the QP and in general any property
that depends explicitly on the distribution of their loca-
tions. It has been observed time and again that in many
growth processes in Laplacian (and in other) fields, the
growth probability along the surface seems to flow to-
ward a stable asymptotic form. One manifestation of this
phenomenon is the appearance of a time-independent
multifractal function [18]. Since it is possible to show
that the growth probability along the growing surface is
directly related to the spatial distribution of {Z} and {P}
[19], one can therefore analytically predict the statistics
of the physical surface, its asymptotic morphology, and in
particular the entire multifractal spectrum.

To illustrate how the above formalism is carried out,
let me outline how to calculate the asymptotic (steady
state) statistics of the curvature along the surface. It is
shown below how knowledge of this distribution yields
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the asymptotic growth probability distribution, and how
from the latter one can obtain the fractal dimension and
the entire multifractal spectrum. There are two ways to
go about such a calculation.

(i) Since the curvature is a function of the locations of
the QP, one can simply calculate the nth moment of K
from Eq. (5.1) by putting K" for X. For example, if the
Gibbs measure is assumed we have

M,,(z)E(K"(z,{Z},{P]))
fK" P] H +V)

This integral depends on z because the curvature is a lo-
cal quantity, and in fact we are probing the statistics at a
given location z=e®. For isotropic growths, one can in-
tegrate the result over s (along the surface) for the final
answer, but for anisotropic growths [0 =0(z)] expression
(5.2) shows that the curvature statistics may well depend
on the direction, which should not come as a big surprise.

(ii) The second approach is to first construct the master
equation for the distribution of the locations of the QP,
P, by using Liouville’s theorem:

dNzd®p . (5.2)

R)a?

'l

+3 f =0, (5.3)
n

where R, is the nth component of the 4N-dimensional
(2N degrees of freedom in two dimensions) vector
R=(Z,,...,Zy,P,,...,Py). Since all existing obser-
vations of Laplacian growth processes indicate that the
surface flows into a well-defined asymptotic morphologi-
cal form with well-charted statistics, there must exist a
stable limiting form that corresponds to the surface’s
statistics. Thus one gets a well-defined fractal dimension
and a reproducible multifractal spectrum. We can there-
fore assume that there is a nontrivial steady-state solution
where the direct dependence of 7 on ¢ vanishes, which
simplifies Eq. (5.3). Upon solution of this equation (clear-
ly under some physically valid approximations, as is usu-
ally done in statistical mechanics) one obtains
P({Z},{P}). Since the value of the local curvature K de-
pends on the locations vector R, one can consequently
find the distribution function of K.

Example. Let us consider one possible approximation.
Suppose that a QP, indexed 0, is located at Roelso where
R, is close to 1, and suppose that there is no other QP
closer to the UC in the vicinity of 5,. This particular QP
then dominates the local curvature at z=e ° as can be
seen from expression (4.2). Therefore, the approximation
consists of completely ignoring the effect of the other QP
at s5. If one further assumes that the distribution of QP
is isotropic, then the probability density of K, P,(K), is
simply defined in terms of the probability density of R,
Py(Ry), as follows:

dR,
dK

PU(K)=PyR,) (5.4)

With the above approximation, the curvature at s, be-
comes

1+R, 2C

=~ ~ )

(1—Ry)* (1—Ry)?

where

C=II"=P,)/ II (=2,

m'#0

is approximately constant for z in the neighborhood of s,.
Differentiating this expression with respect to R, insert-

ing in (5.4), and expressing R, in terms of K gives

1372 |
2C

, | 2¢
P =eomsx | €
|(K)=cons &

This alternative route gives again an anisotropic z-
dependent probability density of K as discussed above.

A significant point to note in this simple calculation is
that even if 7, possesses exponentially decaying tails, the
probability density of K decays algebraically. This
feature is the signature of scale invariant and fractal
structures. Therefore, already this crude approximation
gives us a hint regarding the origin of the fractality ob-
served in related real growth processes, such as electro-
deposition, diffusion-limited-aggregation, solidification,
bacterial growth, etc.

It is possible to generalize the above calculation to a
multivariate distribution (i.e., using the general depen-
dence of K on all the R,’s) without using the above ap-
proximation. This is outside the scope of this paper and
will be discussed elsewhere. In any case, the above
demonstrates how to use the knowledge of the distribu-
tion of the locations of the QP to determine the distribu-
tion of the curvature. The latter comprises, by definition,
the morphology of the growing surface, which can now
be uniquely determined. Thus the statistical formulation
presented here constitutes the beginning of a full theory
for the problem of a surface growing in a Laplacian field.

VI. DISCUSSION AND CONCLUDING REMARKS

To conclude, I have formulated here an initial theory
for growth of surfaces in a two-dimensional Laplacian
field. This has been carried out in several stages. First,
following previous results, the evolution of the surface
has been transformed into the problem of studying the
dynamics of a many-body system. The quasiparticles
(QP) in this system consist of N zeros and N poles of the
conformal map that maps the interior of the growth onto
the area enclosed by the unit circle (UC). In passing, I
have pointed out how the formalism can be extended to
include an infinite number of QP and subsequently to de-
scribe a continuous density of these particles. The next
step was to show that the growth process is governed by
Hamiltonian dynamics and to explicitly write down this
Hamiltonian. Whether the Hamiltonian is integrable or
not is not directly relevant to the theory formulated here,
but a general class of arbitrary initial conditions that re-
sult in integrable dynamics has been explicitly analyzed
and solved for in the Appendix. The existence of a Ham-
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iltonian that underlies the dynamics immediately opens
new horizons, which I exploited for the construction of
the theory. The first difficulty that the Hamiltonian helps
to overcome is the inherent instability of this general
growth problem. By incorporating the surface effect
directly in the Hamiltonian as a potential term, forma-
tion of cusp singularities along the surface is eliminated
and the validity of the equations of motion (EOM) is ex-
tended to infinite time. I have argued that the potential
term must correspond to a repulsive interaction between
the QP and the surface. Since this potential diverges as a
QP approaches the surface, the system is then confined to
a well with infinite walls located on the UC. An explicit
example that demonstrates the regularization by this
method has been computed and plotted. This approach
is naturally suited to both isotropic and anisotropic
surface-tension effects, which heretofore could only be in-
cluded in an ad hoc manner by assuming an extra term in
the EOM of the surface. The present formalism can easi-
ly enjoy a field formulation in the sense that (i) QP can
annihilate as can be seen directly from the form of the
map (2.6) and (ii) depending on the nature of the field that
the QP’s move in, they can split. This latter feature has
been suggested and used previously [12] with the observa-
tion that splitting of zeros is a mechanism that reduces
locally high curvatures. In the physical growth, such a
split corresponds either to tip splitting or to side branch-
ing, depending on the details of the process.

Turning to the statistics of the growth, let us first recall
what we require from a full theory of growth. The theory
should start from the basic EOM of the surface and, tak-
ing into account the noise that affects the growth process,
should predict statistical properties of the asymptotic
morphology that the surface evolves into. This is based
of course on the observations that such an asymptotic
morphology does exist in most Laplacian growths, e.g., in
diffusion-limited aggregation, solidification, electrodepo-
sition, bacterial growth, and others. But what does one
mean by “morphology” in this context? It is only recent-
ly that a quantitative definition of this vague concept has
been proposed for scale-invariant structures [20]. Note,
however, that knowledge of the distribution of the curva-
ture along the surface is equivalent to knowledge of the
morphology of the asymptotic structure. For example, in
the present context a popular measurable quantity is the
dimension of the growth that relates to the time depen-
dence of the size of the growth (the size can be defined by
the radius of gyration for an aggregate or by the
equivalent circular capacitor [21]). This quantity relates
directly to the third moment of the growth probability
distribution [22]. A customary generalization has been to
study higher moments of this distribution. These can be
cast in one function termed the multifractal function (or
spectrum). Although this author believes that the mul-
tifractal function lacks sensitivity for useful characteriza-
tion of the surface’s morphology for these growth pro-
cesses, it is nevertheless a signature of the structure.
Therefore, one acid test of the present theory is whether
it can lead to a prediction of the fractal dimension in par-
ticular and this entire function in general. In fact, the ob-
servation in Sec. V that the curvature entertains a
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power-law distribution even for well-behaved distribu-
tions of the QP’s already points to the origin of scale in-
variance and fractality. Thus this formalism has the po-
tential to derive the onset of such behavior (rather than
assume scale invariance, as is usually done in the litera-
ture for analytical calculations). Indeed, full knowledge
of the curvature statistics is sufficient to determine these
quantities as follows. The local curvature of the evolving
surface can be related to the local field gradient normal to
the surface. The latter can be related in these processes
through some constitutive relation to the growth proba-
bility p. For example, a popular such relation is
p=|V®|"~K", (6.1
with 7 a parameter that can be adjusted according to the
system under consideration. Thus from the knowledge of
?,(K) it should not be too difficult to derive the distribu-
tion of p and therefore the entire multifractal function.

To facilitate such a calculation, the next stage consists
of employing the existence of Liouville’s theorem due to
the Hamiltonian description and considering the spatial
distribution of the QP. This was carried out in two ways.

(i) First, considering an ensemble of initial conditions,
one defines a measure u(H), from which the partition
function Z can be calculated. Writing the explicit depen-
dence of the curvature along the surface on the locations
of the QP, one can then calculate directly the moments of
the probability density of the curvature. As in the case of
the Gibbs measure u(H)=e PH, one can identify a
Lagrange multiplier B that corresponds to smearing of
the trajectory due to fluctuations in the process. This in-
troduction of noise is analogous to (but seems to this au-
thor somewhat more natural than) introducing noise
effects directly in the EOM of the QP. Nevertheless, this
equivalence can be probably demonstrated by an analo-
gue of the usual fluctuation-dissipation theorem, an exer-
cise that has not been attempted in this presentation.

(ii) The second is a more dynamical approach. The ex-
istence of a Hamiltonian implies by Liouville’s theorem
that the volume occupied by the system in the 4N-
dimensional phase space is incompressible. Combining
this with the observation that the statistics of the surface
flows toward a stable fixed point immediately leads to the
simplified master equation (5.3) for the distribution of the
locations of the QP in the mathematical plane, I have not
attempted here to solve this equation in any limit or ap-
proximation. Rather, I showed that the solution to that
master equation yields all the needed information on the
asymptotic morphology of the evolving surface, again by
using the explicit dependence of the curvature on the lo-
cations of the QP.

Thus the curvatures statistics can be calculated in the
present approach, and therefore the entire multifractal
function as well as other relevant quantities. For exam-
ple, combining the approximation (5.5) with the constitu-
tive relation (6.1), one can relate the growth probability
distribution P,(p) to the distribution of the QP as fol-
lows:

P,(p)=constXp ~17V/21P (1—(2C)?p ~1/21) , (6.2)
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Again, the power-law decay of this probability, which ap-
pears regardless of the behavior of P,, points towards the
possible origin of fractality in the system.

Thus, to the best of this author’s knowledge, this
theory represents currently the only approach that can
lead to a quantitative calculation of all these properties
from first principles.
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APPENDIX: AN INTEGRABLE CASE STUDY
OF N-SYMMETRIC GROWTH
WITH ARBITRARY INITIAL CONDITIONS

In this Appendix, I consider a particular class of arbi-
trary initial conditions for which the system is integrable
and the solution to the set of EOM can be obtained ex-
plicitly. Let us consider an initial surface that is
represented at t =0 by the form

N
y(5,0)=e*+ ¥ R,In[e“—P,(0)],

n=1

(A1)

where

N
Rn = H {[Pn(o)—zm’(o

m'#n

)1/[P,(0)—P, (0)]} .

It can be shown that the surface-tension-free propagating
curve y(s,t) can also be described by this form for any
later time if the values of P, and Z, are substituted by
their time-dependent values. The form (A1) is valid for
any number of QP, where R, should be interpreted as the
residues of the function F'=dF /dz when a contour in-
tegral is taken around the nth pole P,. Moreover, one
can easily convince oneself from the EOM [7] that the
number of QP, N, of each kind is invariant under the
EOM. Thus the growth problem consists now of investi-
gating the dynamics of N zeros at Z, (t)=Z (t)e'"®, where
a=2m/N and N poles at P,(t)=P(t)e"™[Z(t) and P(t)
are real functions of time]. The initial values Z(¢r=0)
and P(t=0) are completely arbitrary as long as P(0),
Z(0)70, and P(0)#Z (0). The dynamics of these singu-
larities can be found by substituting directly into Eqgs.
(2.7). An observation that is worthwhile to note is that
both from symmetry arguments and from direct analysis
of the EOM, one can see that the motion of all the QP
will be purely radial. Therefore, the arguments na stay
constant and the only time-dependent variables are the
radial locations from the origin Z(¢) and P(¢). Next we
observe that requiring that F be holomorphic outside y
implies that there is a sum rule imposed on the locations
of the singularities [12,15]

22(: ZP (A2)

n=1 n=1

which can be shown to be identical to requiring that

N
S R,=0.

n=1

These constraints simplify the EOM that can now be
written as

~$x =y /x —H[1—2/N+(1+2/N)y/x] ,
1 (A3)
——yp=yp/x—H(1+y/x),
Ny
where 1 have defined x=2Z%, yEP"\, and

#=(1—xy)/(1—x?2). This system of equations displays
a qualitatively different behavior when P (0) is smaller or
larger than Z(0). In the first case, cusp singularities ap-
pear at a finite time that corresponds to the time when a
zero arrives at the UC. In the second case, such singular-
ities are avoided for any finite time. The issue of particu-
lar cuspless growth solutions due to specialized choices of
the initial conditions has received some attention in the
literature [23]. This issue is not directly relevant to the
main thrust of this paper, but it should be pointed out
that recent calculations [24] for the present N-symmetric
case suggest that the noncuspiodal solution for
P(0)>Z(0) is unstable for small perturbations in a, un-
der which it flows into a cusp-forming solution.

To emphasize a point made in the text, I intentionally
choose initial conditions that lead to cusp formation,
P(0)<Z(0) and arg(P,)=arg(Z, ). The point is that re-
gardless of whether or not the solution breaks down after
a finite time, the dynamics is Hamiltonian up to the mo-
ment of breakdown. In other words, the dynamics
remain Hamiltonian (and for the present case, integrable)
as long as the EOM are valid. When cusps form, the very
EOM cease to be valid and the entire framework of trans-
forming the growth problem into the many-body dynam-
ics no longer holds. Indeed, one of the goals in the text is
to extend the formalism with the aid of surface energy so
as to make it hold for t — oo regardless of initial condi-
tions. Since this has been achieved in the text, it makes
no difference to the present analysis whether the descrip-
tion of the surface-tension-free curve holds for a finite or
infinite time.

Inspection of the EOM shows that if the zero and the
pole meet, say, at r, they keep moving together at an ex-
ponential rate,

r(t)=rye™" .
This observation, however, is academic because once a
pole and a zero meet, they “annihilate.” This can be
verified by inspecting the form of the conformal map
(2.6), upon encounter, P, =Z,, and therefore the corre-
sponding terms (z—Z,)/(z—P,) cancel and these QP
disappear from the scene.

Using (A1) and a straightforward manipulation yields
for the explicit form of the interface at any time ¢ >0

ois Z(t)1—y/x)

(s, t)= N

N .
X 2 ean/’Vln e ___P( ) an/f\] . (A4)
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Carrying out a rather tedious manipulation of the
EOM (A3), one can show that the following is a constant
of the motion

1-2/N
Y 4 L(y)=const, (A3)
. —
where
~1/N
L=t re—du (A6)

The EOM can be integrated out now and the trajectories
of P and Z can be found explicitly.

We can now find the canonical action-angle variables
in terms of the original coordinates. The action variable
can be immediately set to

y1=2/N
J==—+L(y),
x—y

which we know is a constant of the motion. The Hamil-
tonian is then

H=wJ ,

(A7)

with » some constant frequency and with the angle vari-
able ®=wt +®,. The fact that we have only one action
and one angle variables reflects the degeneracy of the
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problem due to the N-rotational symmetry, where only
Z(t) and P(t) remain the relevant degrees of freedom.
Thus we have an integrable Hamiltonian that depends
only on half the number of degrees of freedom J. Substi-
tuting x from Egs. (A5) or (A7) into the second equation
of the set (A3) yields immediately the result for y(z) in
the form

fyl §2(1+.£)2 dE, Ly _ y N
- L(y) -

(A8)

t_to

And substituting this into the first of the equations (A3)
gives the corresponding solution for x (¢).

As mentioned in the text, in this treatment the prefac-
tor in front of the conformal map F, A (?), is taken to be
unity. Since an implicit assumption in the general formu-
lation of the problem is that the flux into the growth is
constant in time, then the total area enclosed by the sur-
face should increase linearly with time. Thus by main-
taining a unity prefactor, the growth is in fact rescaled at
each time step by 1/A4%(¢). For this reason, a plot of this
surface will reveal sections of the boundary that seem to
retreat with time, although the actual physical surface al-
ways grows outwards. The evolution of this prefactor
follows a first order ODE as has already been discussed in
the text.
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