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�
A minimal model is constructedfor two-dimensionalfracture propagation. The heterogeneous

process� zone is presumedto suppressstress relaxation rate, leading to non-quasistaticbehavior.
Using
�

the Yoffe solution, I constructand solve a dynamicalequationfor the tip stress. I dicussa
generic	 tip-velocity responseto local stressand find that noise-freepropagationis either at steady
state
 or oscillatory, depeningonly on one material parameter. Noise gives rise to intermittencyand
quasiperiodicity.� The theory explainsthe velocity oscillationsand the complicatedbehaviorseenin
polymeric� and amorphousbrittle materials. I suggestexperimentalverificationsand new connections
between
�

velocity measurementsandmaterialproperties. [S0031-9007(96)00162-7]

PACSnumbers:46.30.Nz,62.20.Mk,81.40.Np

Thedynamicsof crackspropagatingin amorphousbrit-
tle



mediafocusedextensivestudysincetheforties,mostly
through



quasistaticapproachesand energeticarguments.
In spiteof recentlyrenewedinterestthereareseveralfun-
damental
�

issuesthat seemdifficult to resolvein any sim-
ple� way. For example,the limiting crack velocity, pre-
dicted
�

to be the Rayleighwavespeed(RWS) in the bulk
[1], is observedto be only abouthalf of that; the mecha-
nism� for crack initiation andarrestis poorly understood;
and� the occurrenceof velocity oscillations[2] is still a
puzzle.� At the heartof the problemis the fact that the
system’sbehaviordependson the lengthscale. While it
is
�

evidentthattheatomisticbehaviordiffers from thecon-
tinuous,



it is this author’sopinion that evenon the con-
tinuum



scalethe physicsnearthe tip is distinct from that
far awayandthereforeshouldbetreateddifferently. This
may explainan apparentdiscrepancy: On the onehand,
sincethebulk shearwavespeed(SWS)is higherthanthe
crack� velocity, it is clearthatfar from thecrackquasistatic
arguments� shouldwork well becausethe field relaxesto
its static form, ����������� �"!$#&%('*)"+ ,.-0/ , sufficiently fast.
Here
1 2�3�4

is the stresstensor,r is the distancefrom the
crack� tip, 5 6"7 depends

�
only on the azimuthalangle 8 ,

and� K
9

is
�

the (time-dependent)stressintensity factor. On
the



otherhand,the inability of quasistatictheoriesto ac-
count� for theabovephenomenasuggeststhatmuchof the
behavior
:

is determinedby the local
;

dynamicsat the tip
and� hencethat the propagationis a far-from-equilibrium
process,� indescribableby approachesthat appealto en-
ergy< balancing. In the two-scalepicture the nonequilib-
rium dynamicsact, in effect,to dressthetip singularityas
seenfrom afar. The matchingof the nearand far fields
at� thecrossoverscalethenyieldsthefar-awaybehaviorof
K. A reasonableguesswould be that the crossoverscale
is of theorderof thesizeof theprocesszone(PZ) in front
of= the propagatingcrack. While the far quasistaticfield
is
�

well understoodwithin linear elasticity, there is little
understanding> of the short-rangephysics,althougha few
phenomenological� dynamicequationshavebeenadvanced
[3,4] to explainthe limiting tip velocity.

It has beenconjectured[5,6] that the reasonfor the
complicated� short-rangebehavior is the heterogeneous
and� fluid structureof the PZ. This conjecturemay be
supportedby observationsof extremelyslow relaxation
ratesof thestressat thetip afterarrest[7], ratesthatarean
order= of magnitudebelow expectationhad the relaxation
taken



placeat the bulk speedof sound. This implies that
the



wavesthat re-establishthestressfield in thePZ travel
at� a speed,c? , that is much@ lower than



the bulk SWS,

probably� dueto scatteringfrom microvoids.
The
A

modelproposedhereconcernsthe short-rangedy-
namics� and takeson board severalingredients:the low
valueB of c? in

�
thePZ,theoccurrenceof differentstressesfor

crack� initiation andarrest[5,8], and,basedonexistingob-
servations,anassumedvelocity responseto the tip stress.
Thesesuffice to constructandsolvea dynamicequation.
The explicit form of the velocity-stressrelationis not re-
quiredC for mostof theresultsobtainedhere,only its qual-
itative behavior. The modelleadsto eithera steady-state
propagation� at a limiting velocity or anoscillatorybehav-
ior, with the selectionbetweenthe two modesdependent
on= the locationof the suppressedspeedc? on= the velocity
responseD function. Introductionof noisedueto microvoid
distribution
�

is shownto give rise to an intermittentpropa-
gationE thatcanturn into a quasiperiodicbehavior.

Consider
F

a line crack(not necessarilystraight)in a two-
dimensional
�

material. ThePZin front of thetip is modeled
as� an effectivecontinuousmediumwith a reducedSWS,
c? . The dependenceof the crack dynamicson material
properties� enters through a velocity responsefunction,GIH&JLK [9], whereM is thelocalstressatthetip in theforward
direction.
�

As the crackpropagates,the field nearthe tip
adjusts� to thechangingboundaryata ratethatcorresponds
to



c? . Observationsthatsteady-statepropagationis atabout
half thebulk RWS,combinedwith the fact thatc? is much
lower thanthebulk (homogeneous)RWS,impliesthatthe
tip



velocity canmomentarily@ exceedthe



local valueof c? .
This is a basicassumptionin what follows. I comment
that



this doesnot violate the energybalancewhich holds
for
N

scalesaway from the PZ, becausenear the tip the
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dynamic
�

responseVIW&XLY is
�

swifter than the global energy
equilibration< process. The measuredbehaviorof ZI[&\L]
is
�

hysteric with two material-dependentthresholds: ^`_ ,
above� which propagationinitiates,and a`bdcfe`g , to which
the



stresshas to drop for the crack to arrest[5,8]. Forhjikhml the



velocity is alsoknownto increaseveryslowly
withn stress[10,11]. Figure1 showsa qualitative form
of=poIq&rLs that



is consistentwith experimentalobservations.

This local nonmonotonicresponddiffers from that in [4]
whichn dependson energyequilibration far from the tip.
Its locality allowsoneto find thedynamicswithout further
assumptions.� A local two-branchvelocity canbederived
from atomisticmodels[12].

To derive the equationof motion of the tip, let us
start from the Yoffe solution for the forward field of a
propagating� crackof lengthat [13],

uSvkwyx{z&|&}�~������ ���&���������&�{� (1)
�

wheren � is the distance from the tip and �y� is the
tensile



stressapplied perpendicularto the propagation
axis� far away from the crack. In what follows, the
stressis measuredin units of �y� , and ���������I� is
dimensionless
�

and  ¢¡ . This solution assumesthat the
singularity of the field is always at the tip, which is
consistent� with a quasistaticpicture. Consider,however,
a� situationwherein the dynamic responseconstrainsthe
tip



to overtakethe density waves that adjust the field.
In this situation the singularity in the stressfield does

£
not¤ coincide� with the location of the tip, and the tip’s
stressdrops to below the static value. The difference
between
:

thestaticanddynamicstressesat thetip depends
on= the tip’s velocity ¥�¦¨§ª©¬«®­ª¯ and� the propagation
history. The dynamicstressis found from (1) by putting°²±k³µ´·¶S¸º¹¼»*½¿¾µÀ·ÁSÂºÃÅÄ

, where l
;

is the tip’s position
and� the step function Æ ensures< that, when the shear
waven catchesup, the tip stressstaysat the static value.
When
Ç ÈÊÉ¨Ë

the



tip stressdiverges as expectedand
traditional



quasistaticsolutionsapply [14]. Focusingon
nonquasistatic� propagation,I assumeÌÎÍfÏ during

�
the

entire< growth. When Ð alternates� between0 and 1 one
simply pieces the solutions together. Taking the time

FIG. 1. A genericplot of Ñ�Ò¼ÓÕÔ .

derivative
�

of (1), we haveÖ×SØÊÙÛÚÜ(ÝßÞ�à�á&â�ã&ä�åçæ�è�éëêíìïî&ðòñ
(2)
�

Using
ó

(1), we caninvert relation(2):ôõ�ö�÷ùøûúùüý�þ�ÿ��������	��

����� (3)
�

We
Ç

define ��������������
as��� "!$#&%

, whereu' is
�

a reduced
velocity.B Uponsubstitutionin (3), we canreadilysolve

(*)�+ ,.-0/21 3 465 7 896: ; <>=
?A@BDC�E�F�G	H�I
J�KMLONQPSRUT (4)

�
The
A

kineticsarethusdeterminedby theresponsefunction
through



thestressdependenceof V6W�XZY . Relation(4) is the
bare
:

result of this Letter. It is an exactderivationfrom
the



Yoffe solution. It givesthe generaltime dependence
of= the stressat the crack tip. Once the stresshistory
is
�

found from this relation,one substitutesit in []\�^Z_ to



obtain= the velocity history. We now proceedto analyze
the



consequencesof this result, assumingthe qualitative
responseshownin Fig. 1. It is convenientto classifythe
behavior
:

in termsof the ratio `�acbMd&egf . The reasonis
that,



asis shownbelow,themodeof propagationdepends
only= on this ratio.h�i�j

.—The point k k k�lnmpo�qsrgt�uu u is on the upper branch
of=wv]x�yZz . Supposethat initially {�|c{U} . The velocity is
momentarily~ zero(or very low), and the tip stressbuilds
up> to ��� . At this stagethe system“jumps” to the upper
branch
:

and fast motion ensues. From relation (4) we
seethat for �U���$�n�����������n������� the



stresswill decrease

[increase]until � converges� to ������� , whereafterthe tip
propagates� at a velocity c? and� a fixed distanceaheadof
the



densitywaves. Thus � � ���n�����s g¡�¢¢ ¢ is
�

a fixed
£

point of= the
equation< of motion. The behaviorat the vicinity of this
point� canbefoundby linearizationof relation(4):¤D¥c¦�¥n§�¨�©�ª¬«$­U®°¯²±S³�´

µ·¶¹¸�ºn»�¼�½¿¾ÁÀ�Â	Ã�ÄÆÅ�ÇÈ
É�Ê
Ë�Ì Í�Î Ï¿Ð�Ñ (5)

�

Since
Ò Ó]Ô�ÕZÖ

near ×nØ�Ù�Ú is smoothandpositive Û is regular
and� positiveandthefixed point is stableÜ , namely,steady-
state propagationat a limiting velocity c? is a stable
fixed point of the dynamics. A typical such history ofÝ is shownin Fig. 2. An interestingimplication of this
result is that the experimentallyobservedlimiting crack
velocitiesB give, in fact, the value of c? and� hence the
local
Þ

stressrelaxationrate. This suggestsa checkof this
model~ by comparingthe limiting velocity to the speed
of= soundin the PZ. It is intriguing to note that evenin
the



absenceof a globalenergybalancecriterion thecrack
velocityB convergesto the SWS,albeit the local value,c? .
Observations
ß

that à increases
�

very slowly with K
9

[15] in
this



regime indicate a small value of áãâ]ä�åãæ along� the
upper> branch. In view of thepresentanalysis,this agrees
withn the reported velocity behavior immediately after
crack� initiation [5,8,10]. Another check of this picture
can� be suggested: In someexperimentsa drop in the
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FIG. 2. Typical velocity histories in the steady-state(solid)
andperiodic(dashed)regimes.

stresshasbeenmeasuredaftercrackinitiation [16]. This
suggeststhat in thosesystemsç�è�é�êìëcí�î , a conclusion
that



canbe checkedby independentmethodsasa testof
this



analysis.ï"ðòñ
.—To analyzethis case,let usassumeagainthat

initially the tip stressis lower than óUô . From relation(4)
the



stresswill increaseuntil it reachesõUö , whereuponthe
crack� will start propagatingas for ÷"ø$ù . The velocity
and� thestresswill thengraduallydecrease.Since úüû�ýÿþ
is
�

not a point on the upper branch, the systemcannot
settleinto a steadystateasbeforeandat ��� it

�
flips back

to



the lower branch. Therethe crackhaltsmomentarily,
the



stressat the tip builds up againto ��� , and the cycle
repeatsitself. This is a relaxationcyclewhosen period is
found from (4):

��� 	



�
�
���
��������������� �"!�#�$�%'&�(*),+

-*.0/214365�798;: <>=@? (6)
�

wheren ACB�DFEHG and� I�J'KFL"M are,� respectively,the values
of= u' along� the upper and lower branches. When the
velocityB vanishesalong the lower branch N�O'PRQTSVU . A
typical



velocityhistoryin thiscaseis alsoshownin Fig. 2.WYX"Z
.—This marginalcaseis sensitiveto thevalueof[>\^]�_>`
at�4a�b . If the derivativeis regular,onecaneasily

seethat the analysisis the sameasfor cYdfe . The only
difference
�

is that g can� only approachhjilk0monqp�r from
above� becausefor s4tqs�u the



only motionis up thelower

branch.
:

If vxw^y�zx{ diverges
�

at |�} , the behaviordepends
on= the detailedform of the divergence. For illustration,
consider� theform

~������ exp< � ������"�
�
����� const�

�H�����"���*�6���
(7)
�

withn ��� �¡� ¢ . The behaviornear the fixed point is
found
N

by using(7) in Eq. (4),£�¤H£V¥�¦0§©¨ ª¬«®­2¯"°9±�²´³®µ ¶�·¹¸lº>»½¼�¾�¿�À®Á�Â"Ã´Ä6ÅÇÆ®È É�Ê¹ËlÌÎÍ
(8)
�

wheren ÏÑÐRÒ�Ó is a constant. Now the propagationrate
converges� to c? as� a powerÔ law ratherD thanexponentially.
It
Õ

shouldbe notedthat this propagationmodeis sensitive
to



small fluctuationsthat caneasilyflip the systemto the
lower
Þ

branch. A small noisein this casewill give rise to
a� quasiperiodicmotionsimilar to thatdiscussedbelow.

Intermittency
Ö

andquasiperiodicity.—SincethePZis in-
homogeneous,oneexpectsfluctuationsin the local prop-
erties< which may well go beyondthe effective medium
assumption.� For simplicity, let us restrict the discussion
only= to fluctuationsin the tip stressduring propagation,×4ØqÙÛÚ�Ü;Ý9Þàßâá©ã;ä9å , whereæèç is thestressin theabsenceof
noise. This correspondsto a situationwherethecracken-
counters� microvoidsof varyingsizesalongits path. Upon
association� of amicrovoidto thecrack,thetip stressdrops
momentarily~ with the drop dependingon the microvoid’s
size. Thefluctuationsin microvoidsizesgive risethento
noise� in the tip stress. A fluctuationduring steady-state
propagation� that reducesé by

:
morethan êìëqíjîlï®ð ñ"ò�ó

(see
�

Fig. 1) flips thesystemto thelower branch. Thesys-
tem



thenhasto go throughtheprocessof stressincreasetoô�õ , jump to theupperbranch,andconvergeto öj÷;ø®ù again.�
The time that this processtakesdependson the original
fluctuation, úüû�ý , andcanbe found by applying (4) to
the



motionalongthe two branches:

þ ÿ ������� � 	�
��
 ���
������������� �"!$#%�&('*),+.-�/103254

6�7
8�9 :�;=<�>

?A@CB�D�E�F�G HJILKMON(P*Q,R.S�TVUXW Y
(9)
�

It
Õ

is the occurrencefrequency of the flips between
the



brancheswhich determinesto a large extent the
observable= behavior. This frequencydependson boththe
noise� characteristicsand the value of Z . The stochastic
velocityB behaviorcan be obtainedfrom the statisticsof[ by

:
using relation (9). For example,the probability

density
�

of \ , ]_^J`ba , canbe found from that of c , dfeAgXh�i ,
by
:

invertingrelation(9) to obtain j*k3lnm and� substitutingino_pJqbrtsvufw�xx xXy*zX{}| | | |3~��*���f���
(10)
�

From(9) onecanalsofind theeffectsof variousformsof
the



noisetemporalcorrelations�.�*�J�����*�X�1�C�X� on= thevelocity
history. A detailed analysisof the statistics,including
the



explicit dependenceon the distribution of microvoid
sizes,will bereportedshortly. HereI only pointouta few
intriguing consequencesfor ����� and� ���X���b���¡  : First,
a� low occurrencefrequency(i.e., ¢¤£¦¥¨§ ) o

�
f ©«ª�¬ leads

Þ
to



an intermittent
­

behavior,
:

whereinthe tip is “knocked”
occasionally= from the steadystateand then returnsto it
only= to be knockedout of it again at a later time. A
plot� of such a history is shown in Fig. 3. Second,a
veryB high occurrencefrequencyof fluctuationsof size®°¯�±³²µ´·¶¹¸ givesE rise to a quasiperiodicbehavior as
follows: As the tip stressbuilds up along the lower
branch
:

to º³» the



systemflips to the upper branch. A
fluctuation then immediatelyknocks the systemback to
the



lower branch,not allowing it to settleinto the steady
state.Themeanperiodwill thenbecloseto thetime spent
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Fig. 3. A typical velocity history in the intermittentregime.

on= the lower branch,namely, ¼¾½�¿ÁÀ¨Â�Ã Ä=Å3Æ*Ç·È�É�Ê�ËÌ�Í�Î Ï1Ð3ÑtÒÓXÔtÕ×Ö�Ø�Ù�ÚÛ.Ü�Ý Þ1ßXà�á
. Thus the microvoid size distribution

determines
�

the observablebehavior by governing the
statisticsof â . Sincethis distributionalsoplaysa major
roleD in determiningtheroughnessof thefracturesurfaces,
my analysiscanrigorously link roughnessmeasurements
to



thevelocity history.
To summarize,a minimal theoreticalmodel has been

proposed� to explain the rich behaviorobservedin crack
propagation� in amorphousandpolymericmaterials. The
theory



is a directconsequenceof theobservationsof slow
relaxationratesof thetip stress,theoccurrenceof different
initiation and arreststresses,and the deducedqualitative
form
N

of ãfä3å¹æ . The modeof propagationhasbeenfound
to



dependonly ononematerialparameter,ç,èêéAë�ìîí . Forï·ðòñ
the



propagationspeedsaturatesto a limiting value,
whilen for ó×ôöõ it

�
oscillatesperiodically. Noise gives

riseD to a spectrumof behaviorrangingfrom intermittentto
quasiperiodicC propagation. The modelexplainsnaturally
recentobservationsof oscillationsin polymericmaterials,
and� measurementsfor its validationhavebeensuggested.
It predictsthat the low-noisesteady-stategrowth rate is
exactly< c? , thewavespeedin thePZ,andshouldbepossible
to



testexperimentally. Low ÷ is expectedto correspond
to



high disorder and vice versa. So, by manipulating
the



disorder,one may tune ø . I shouldremark that the
effective< continuum approximationof the PZ probably
breaks
:

down for too broad a distribution of microvoid
sizes,and a statisticaltreatmentis more adequate. E.g.,
for
N

propagationvelocitiesof order ù¤úvû¨ü�ü m~�ý sandgiven
the



fact that currently observationsare limited to times
of=ÿþ secand higher, the effective continuumassumption
shouldhold when microvoidsare smaller than 500 � m.~
Microvoids
�

do not usually reachsuchsizesin polymeric
materials,and thereforethis modelshoulddo a goodjob
explaining< experimentalobservations[2] in thesesystems.
A complementarystatisticalanalysisfor broadmicrovoid

distributions
�

is currently underway and will be reported
shortly. Finally, manyramificationsof this modelremain
to



beexplored:theeffectsof noisecorrelations�������
	��
���������
on= thedynamics,theeffectsof realisticdistributionof void
sizes,and the implications of the statisticsand velocity
history
�

on thesurfaceroughness,to namea few.
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