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Nonequilibrium Brittle Fracture Propagation: Steady State, Oscillations, and I nter mittency
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A minimal model is constructedfor two-dimensionalfracture propagation. The heterogeneous
processzone is presumedto suppressstressrelaxation rate, leading to non-quasistatichehavior.
Using the Yoffe solution, | constructand solve a dynamicalequationfor the tip stress. | dicussa
generictip-velocity responseto local stressand find that noise-freepropagationis either at steady
stateor oscillatory, depeningonly on one material parameter. Noise gives rise to intermittencyand
quasiperiodicity. The theory explainsthe velocity oscillationsand the complicatedbehaviorseenin
polymeric and amorphousbrittle materials. | suggestexperimentalverificationsand new connections
betweenvelocity measurementand materialproperties. [S0031-9007(96)00162-7]

PACS numbers:46.30.Nz,62.20.Mk, 81.40.Np

Thedynamicsof crackspropagatingn amorphoudorit-
tle mediafocusedextensivestudysincethe forties, mostly

through quasistaticapproachesnd energeticarguments.

In spiteof recentlyrenewednterestthereare severalfun-
damentalissuesthat seemdifficult to resolvein any sim-
ple way. For example,the limiting crack velocity, pre-
dictedto be the Rayleighwave speed(RWS) in the bulk
[1], is observedo be only abouthalf of that; the mecha-
nism for crackinitiation and arrestis poorly understood,;
and the occurrenceof velocity oscillations[2] is still a
puzzle. At the heartof the problemis the fact that the
system’sbehaviordepend=n the length scale. While it
is evidentthatthe atomisticbehaviordiffers from the con-
tinuous, it is this author'sopinion that evenon the con-
tinuum scalethe physicsnearthe tip is distinct from that
far awayandthereforeshouldbe treateddifferently. This
may explainan apparentiscrepancy: On the one hand,
sincethe bulk shearwave speed SWS)is higherthanthe
crackvelocity, it is clearthatfar from the crackquasistatic
argumentsshouldwork well becausehe field relaxesto
its staticform, o, = Kfap(6)/~/27r, sufficiently fast.
Here o, is the stresstensor,r is the distancefrom the
crack tip, f.p dependsonly on the azimuthalangle 6,
andK is the (time-dependent¥tressintensity factor. On
the otherhand,the inability of quasistaticheoriesto ac-
countfor the abovephenomenauggestshat muchof the
behavioris determinedby the local dynamicsat the tip
and hencethat the propagationis a far-from-equilibrium
process,indescribableby approacheghat appealto en-
ergy balancing. In the two-scalepicture the nonequilib-
rium dynamicsact, in effect,to dressthetip singularityas
seenfrom afar. The matchingof the nearandfar fields
atthe crossovesscalethenyieldsthe far-awaybehaviorof
K. A reasonablguesswould be that the crossoverscale
is of the orderof the sizeof the processzone(PZ) in front
of the propagatingcrack. While the far quasistatidfield
is well understoodwithin linear elasticity, thereis little
understandingf the short-rangephysics,althougha few
phenomenologicalynamicequationsavebeenadvanced
[3,4] to explainthelimiting tip velocity.
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It has beenconjectured[5,6] that the reasonfor the
complicated short-rangebehavior is the heterogeneous
and fluid structureof the PZ. This conjecturemay be
supportedby observationsof extremely slow relaxation
ratesof thestressatthetip afterarres7], ratesthatarean
order of magnitudebelow expectatiorhad the relaxation
takenplaceat the bulk speedof sound. This implies that
the wavesthatre-establishthe stressfield in the PZ travel
at a speed,e, that is much lower than the bulk SWS,
probablydueto scatteringrom microvoids.

The model proposedhereconcernghe short-rangedy-
namicsand takeson board severalingredients:the low
valueof ¢in thePZ,the occurrencef differentstressesor
crackinitiation andarrest[5,8], and,basedon existingob-
servationsan assumearelocity responseo the tip stress.
Thesesufficeto constructand solve a dynamicequation.
The explicit form of the velocity-stresgelationis not re-
quiredfor mostof the resultsobtainedhere,only its qual-
itative behavior. The modelleadsto eithera steady-state
propagatiorat a limiting velocity or an oscillatorybehav-
ior, with the selectionbetweenthe two modesdependent
on the location of the suppressedpeede on the velocity
responsdunction. Introductionof noisedueto microvoid
distributionis shownto give rise to anintermittentpropa-
gationthatcanturn into a quasiperiodidehavior.

Consideraline crack(not necessarilgtraight)in a two-
dimensionamaterial. ThePZin front of thetip is modeled
as an effective continuousmediumwith a reducedSWS,
¢. The dependencef the crack dynamicson material
propertiesentersthrough a velocity responsefunction,
v(o) [9], whereo isthelocalstressatthetip in theforward
direction. As the crack propagatesthe field nearthe tip
adjuststo thechangingooundaryat a ratethatcorresponds
toe. Observationshatsteady-statpropagations atabout
half the bulk RWS, combinedwith the fact thate is much
lower thanthe bulk (homogeneoudRWS, impliesthatthe
tip velocity canmomentarilyexceedhe local value of e.
This is a basicassumptionin what follows. | comment
that this doesnot violate the energybalancewhich holds
for scalesaway from the PZ, becausenear the tip the
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dynamicresponsev (o) is swifter thanthe global energy  derivativeof (1), we have
equilibration process. The measuredbehaviorof v(o) .29 3/2
is hysteric with two material-dependerthresholds:o, o = —{a’/l{(¢ + 2a)17 ©)
abovewhich propagatiorinitiates,ando; < o, towhich  Using (1), we caninvert relation(2):
the stresshasto drop for the crackto arrest[5,8]. For . .

P o ta=—o/0* 1P ©)

o > oy, thevelocityis alsoknownto increaserery slowly
with stress[10,11]. Figurel showsa qualitative form
of v (o) thatis consistentvith experimentabbservations.
This local nonmonotoniaesponddiffers from thatin [4]
which dependson energyequilibrationfar from the tip.
Its locality allowsoneto find thedynamicswithout further
assumptions.A local two-branchvelocity canbe derived
from atomisticmodels[12].

To derive the equationof motion of the tip, let us
start from the Yoffe solution for the forward field of a
propagatingcrackof lengtha [13],

o= o[l + a)/J{( + 2a)], )

where ¢ is the distancefrom the tip and o is the
tensile stressapplied perpendicularto the propagation
axis far away from the crack. In what follows, the
stressis measuredin units of o, and o — o/o is
dimensionlessand >1. This solution assumeshat the
singularity of the field is always at the tip, which is
consistentwith a quasistatigicture. Considerhowever,
a situation wherein the dynamic responseconstrainsthe
tip to overtakethe density wavesthat adjust the field.
In this situation the singularity in the stressfield does
not coincide with the location of the tip, and the tip’s
stressdrops to below the static value. The difference
betweerthe staticanddynamicstressesit thetip depends
on the tip’s velocity v = dl/dt and the propagation
history. The dynamicstressis found from (1) by putting
= ( — ct)®( — ct), wherel is the tip's position
and the step function ® ensuresthat, when the shear
wave catchesup, the tip stressstaysat the static value.
When ©® = 0 the tip stressdivergesas expectedand
traditional quasistaticsolutionsapply [14]. Focusingon
nonguasistatigpropagation,| assume® = 1 during the
entire growth. When © alternateshetween0 and 1 one
simply piecesthe solutions together. Taking the time

Velocity

h Tip Stress
FIG. 1. A genericplot of v(o).
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We defineZ =@ - c¢) asZ = cu, whereu is areduced
velocity. Upon substitutionin (3), we canreadily solve

o(1) d
a N
t —ty= —— a5 - 4
0 - [a(to) (s2 — 1)32u(s) 4)

The kineticsarethusdeterminedoy the responsdunction
throughthe stressdependencef u(o). Relation(4) is the
bareresultof this Letter. It is an exactderivationfrom
the Yoffe solution. It givesthe generaltime dependence
of the stressat the crack tip. Once the stresshistory
is found from this relation, one substitutest in v(o) to
obtainthe velocity history. We now proceedto analyze
the consequencesf this result, assumingthe qualitative
responseshownin Fig. 1. It is conveniento classifythe
behaviorin termsof theratio A = ¢/v;. The reasonis
that,asis shownbelow,the modeof propagatiordepends
only onthis ratio.

A > 1.—The point (o(c), ¢) is on the upper branch
of v(o). Supposehatinitially o < ;. Thevelocity is
momentarilyzero (or very low), andthe tip stressbuilds
up to o,. At this stagethe system“jumps” to the upper
branch and fast motion ensues. From relation (4) we
seethatfor o, > o(c) [<o(c)] the stresswill decrease
[increase]until o convergesto o(c), whereafterthe tip
propagatesat a velocity ¢ and a fixed distanceaheadof
the densitywaves. Thus (o (c), c) is a fixed point of the
equationof motion. The behaviorat the vicinity of this
point canbefound by linearizationof relation(4):

lo = a(c)l = Ce™ ',

ol )
o(c)

a do
Sincev (o) nearo(c) is smoothandpositive y is regular
andpositiveandthefixed pointis stable namely,steady-
state propagationat a limiting velocity ¢ is a stable
fixed point of the dynamics. A typical such history of
v is shownin Fig. 2. An interestingimplication of this
resultis that the experimentallyobservedlimiting crack
velocities give, in fact, the value of ¢ and hencethe
local stressrelaxationrate. This suggests checkof this
model by comparingthe limiting velocity to the speed
of soundin the PZ. It is intriguing to note that evenin
the absencef a global energybalancecriterion the crack
velocity convergedo the SWS, albeit the local value, e.
Observationghat v increasewery slowly with K [15] in
this regimeindicate a small value of dv/do along the
upperbranch. In view of the presentanalysis this agrees
with the reported velocity behavior immediately after
crack initiation [5,8,10]. Another check of this picture
can be suggested: In some experimentsa drop in the
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FIG. 2. Typical velocity historiesin the steady-statgsolid)
andperiodic (dashedyegimes.

stresshasbeenmeasuredfter crackinitiation [16]. This
suggestghat in thosesystemso (¢) < o, a conclusion
that can be checkedby independenmethodsas a test of
this analysis.

A < 1.—To analyzethis case let usassumeagainthat
initially thetip stresss lowerthano;. Fromrelation(4)
the stresswill increaseuntil it reachesr;,, whereuporthe
crack will start propagatingasfor A > 1. The velocity
andthe stresswill thengraduallydecrease.Sincec < v,
is not a point on the upper branch, the systemcannot
settleinto a steadystateas beforeandat o it flips back
to the lower branch. Therethe crack halts momentarily,
the stressat the tip builds up againto o, andthe cycle
repeatdtself. This is a relaxation cyclewhoseperiodis
foundfrom (4):

g["" 1/up(s) — 1/ugp(s)
c Jo (s2 — 1)32
whereu,, > 0 andu;, < 0 are,respectivelythe values
of u along the upper and lower branches. When the
velocity vanishesalong the lower branchu;, = —1. A
typical velocity historyin this caseis alsoshownin Fig. 2.

A = 1.—This marginalcaseis sensitiveto the valueof
dv/do ato,. If the derivativeis regular,one caneasily
seethat the analysisis the sameasfor A > 1. The only
differenceis that o canonly approacho(c) = o, from
abovebecausdor o < o, theonly motionis up thelower
branch. If dv/do divergesat o, the behaviordepends
on the detailedform of the divergence. For illustration,
considertheform

o 14
v = ex;{a(— - 1) :|—> u ~ const
g

+ (o = o)), (7)
with 0 < » < 1. The behaviornear the fixed point is
foundby using(7) in Eq. (4),

o= ole) ~ (g — /"7,

T =

ds, (6)

u~ (rg — 1)/,

®

where 7y > ¢ is a constant. Now the propagationrate
convergedo ¢ asa powerlaw ratherthan exponentially.
It shouldbe notedthat this propagatiormodeis sensitive
to small fluctuationsthat can easilyflip the systemto the
lower branch. A smallnoisein this casewill give riseto
a quasiperiodianotion similar to thatdiscussedelow.

Intermittencyand quasiperiodicity— SincethePZis in-
homogeneousyne expectsfluctuationsin the local prop-
ertieswhich may well go beyondthe effective medium
assumption. For simplicity, let us restrictthe discussion
only to fluctuationsin the tip stressduring propagation,
o = oo(t) — n(t), whereo isthestressn theabsencef
noise. This correspond$o a situationwherethe cracken-
countergmicrovoidsof varyingsizesalongits path. Upon
associatiorof amicrovoidto the crack,thetip stresdrops
momentarilywith the drop dependingon the microvoid’s
size. Thefluctuationsin microvoid sizesgive risethento
noisein thetip stress. A fluctuationduring steady-state
propagatiorthatreducess by morethand = o(c) — oy
(seeFig. 1) flips the systemto thelower branch. The sys-
temthenhasto go throughthe procesf stressncreaseo
o, jumpto theupperbranch andconvergeo o (c) again.
The time that this processtakesdependson the original
fluctuation,n > &, andcanbe found by applying (4) to
the motionalongthe two branches:

a Th wp(s) " ds Th u(s)Tds
T(n)=— f 212 f G- |
c o(c) (S 1) / o(c)—n (s 1) /
)
It is the occurrencefrequency of the flips between
the brancheswhich determinesto a large extent the
observabldehavior. This frequencydependsn boththe
noise characteristicand the value of §. The stochastic
velocity behaviorcan be obtainedfrom the statisticsof
n by using relation (9). For example,the probability
densityof T, P(T), canbe found from that of n, Py(n),
by invertingrelation(9) to obtainn(7") andsubstitutingin

P(T) = Po(n(T))dn/dT . (10)

From (9) onecanalsofind the effectsof variousforms of
the noisetemporalcorrelations(n () n(¢’)) on the velocity
history. A detailed analysisof the statistics,including
the explicit dependencen the distribution of microvoid
sizeswill bereportedshortly. Herel only pointoutafew
intriguing consequencefr A > 1 ando(c) < oj,: First,
a low occurrencefrequency(i.e., <1/7) of n > § leads
to an intermittentbehavior,whereinthe tip is “knocked”
occasionallyfrom the steadystateand then returnsto it
only to be knockedout of it againat a later time. A
plot of such a history is shownin Fig. 3. Second,a
very high occurrencefrequencyof fluctuationsof size
n > o, — o gives rise to a quasiperiodicbehavior as
follows: As the tip stressbuilds up along the lower
branchto o, the systemflips to the upper branch. A
fluctuation then immediately knocks the systemback to
the lower branch,not allowing it to settleinto the steady
state. Themeanperiodwill thenbecloseto thetime spent
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Fig. 3. A typical velocity history in the intermittentregime.

on the lower branch,namely, ~(a/c)[(1 — 1 /o})~1/2 -
(1 —1/a2)"1/2]. Thus the microvoid size distribution
determinesthe observablebehavior by governing the
statisticsof n. Sincethis distributionalsoplaysa major
role in determiningthe roughnes®f the fracturesurfaces,
my analysiscanrigorously link roughnessneasurements
to the velocity history.

To summarize,a minimal theoreticalmodel has been
proposedto explainthe rich behaviorobservedn crack
propagationin amorphousand polymeric materials. The
theoryis a directconsequencef the observation®f slow
relaxationratesof thetip stresstheoccurrencef different
initiation and arreststressesand the deducedqualitative
form of v(o). The modeof propagatiorhasbeenfound
to dependbnly on onematerialparameter) = c¢/v;. For
A > 1 the propagatiorspeedsaturateso a limiting value,
while for A < 1 it oscillatesperiodically. Noise gives
riseto aspectrunof behaviorrangingfrom intermittentto
quasiperiodigpropagation. The model explainsnaturally
recentobservation®f oscillationsin polymericmaterials,
andmeasurementfor its validationhavebeensuggested.
It predictsthat the low-noise steady-stategrowth rate is
exactlye, thewavespeedn thePZ,andshouldbe possible
to testexperimentally. Low A is expectedo correspond
to high disorder and vice versa. So, by manipulating
the disorder,one may tune A. | shouldremarkthat the
effective continuum approximationof the PZ probably
breaksdown for too broad a distribution of microvoid
sizes,and a statisticaltreatmentis more adequate. E.g.,
for propagatiorvelocitiesof orderc ~ 500 m/sandgiven
the fact that currently observationsare limited to times
of usecand higher, the effective continuumassumption
should hold when microvoids are smallerthan 500 um.
Microvoids do not usually reachsuchsizesin polymeric
materials,and thereforethis model shoulddo a goodjob
explainingexperimentabbservation$2] in thesesystems.
A complementarstatisticalanalysisfor broadmicrovoid
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distributionsis currently underway and will be reported
shortly. Finally, manyramificationsof this modelremain
to be exploredtheeffectsof noisecorrelationsn (¢)n(¢'))

onthedynamicstheeffectsof realisticdistributionof void

sizes,and the implications of the statisticsand velocity
history on the surfaceroughnessto namea few.
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