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A method is introducedto representmany-body systemsof arbitrary dimensionality by planar
curves. The positionsand momentaof the particlesare the parameterof a time-dependenhonlinear
transformationwhich mapsthe many-bodydynamicsof the real systemto the motion of the curve.
The descriptionof the systemas a point in a multidimensionalphasespaceis thus replacedby a two-
dimensionalcontinuousline. Expressiondor the curvaturealongthe curve andthe dynamicstructure
factor are obtained. The formulation holds for Hamiltonian and non-Hamiltoniansystems,and two
explicit examplesareanalyzedharmonicoscillatorsanda quadraticsystem. [S0031-9007(97)02340-5]

PACS numbers:03.20.+i

An importantthemein scientific studiesis the inter-
pretationand understandingf various physical theories
andformalismsin termsof geometry. This themedomi-
nated the studiesof giants such as Euclides, Riemann,
Minkovsky, and Einstein. One manifestatiorof this idea
in contemporansciencewhich focusesmuchattentionin
manyfields, is therelationof partial differentialequations
to symmetrygroupsandgeometry. Anotherrelatedaspect
concernsthe shapeand motion of curvesand surfaces,
which, besidests theoreticakelevanceis alsoof practical
importancewhere the dynamicsof interfacesand fronts
is of interest. Examplesaboundin natureandin techno-
logical applicationssolidificationprocesseshockwaves,
kinematicsof polymers,and motion of line vortices, to
namea few.

Here a different aspectof the usefulnesof geometri-
cal representatiotis explored:the possibility to described
many-bodysystemgMBS) asplanarcurves. Theformal-
ism to be developedhere has severalintriguing aspects:
First, it enablesa low-dimensionalvisualizabledescrip-
tion of systems. Second,it helpsrepresentinghe sys-
tem’s dynamicsasa moving curve,which in many cases
is moreaccessibld¢o both numericalandanalyticalstudy.
Third, the correspondencbetweenthe distribution of the
particles of the MBS and the morphology of the curve
gives a new handleon statisticalanalysisof multiparti-
cles physical systems. Fourth, in many circumstances
continuougwo-dimensionaturverepresentationf a sys-
tem of N particleshasan advantageover the traditional
view of a systemas a point moving along a trajectory
in somehuge 6N-dimensionalphasespace. An interest-
ing applicationof this formalism is to communication,
wherethe curve’s configurationcan representa compli-
cateddataandcanbe usedasan efficientmethodfor data
reduction,storage,and presentation. In this context,the
curve’s dynamicsis a sequenceof successivdime step
configurationsthat correspondo a seriesof information
strings. This formalismis applicableto any dynamical
system,Hamiltonian and non-Hamiltonian,describinga
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set of time-dependenvariables. Two examplesare ex-
plicitly discussedelow.

Considera MBS consisting of two-speciesparticles
a and b of equal numbers. For simplicity, the systems
discussecherewill be assumedo havean evennumber
of particles, but this doesnot limit the formalism; an
odd numberof particlescanbe augmentedy a fictitious
extra particle with a predesignedbehavior. In systems
of only one speciesone cangenerateanimageof all the
particles,which arethentreatedasthe secondspeciesas
detailedbelow. The systemis presumedo follow a set
of dynamicalequations

qan = 8ams n=12,...,N; a=ab. (1)
Denotingby p.., = mq., the momentaof the particles,
we canconstructa new setof equationdy differentiating
the set (1) andreplacingthe momentafor the derivatives
of the positionson the right-handside:

ba,n = ha,n(é’ 13) . (2)
If the systemis Hamiltonian,for example the two setsg
andhi canbecastin theform of Hamilton’sequationgsee
below), which meansthat Egs. (1) and (2) are derivable
from a scalarfunction H. Our goal now is to represent
the MBS at any momentn time by a planarcurvewhose
propertiesare uniquely determinedby the momentary
values of the particles’ positions and momenta. The
representativeurveis a complexfunction y (s, r) whose
real and imaginary parts denote,respectively,the x and
y coordinatesof the curve in a complex plane. The
parameters runs along the curve and takes on values
between0 and 27, andt denotestime. It is convenient
to describethe curve as the limit of a function F(z, 1),
which is definedover the entire complexplane. To this
end we considerthe following conformal meromorphic
map from the outside of the unit circle in the complex
Z plane onto the outsideof a simply connectedJordan)
curvein ¢ complexplane{ =u + iv,

dF Qa n
— =F'= 3
l_[ Qb n ( )
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whereQu.n = gan + ipan. FOr brevity, denotein the
following Q,., by Z,, andQ,, , by P,. Thecurveis recov-
eredfrom F by takingthelimit y(s, ) = lim .. F(z, ).
We can now study the kinetics of the map by following
the motion of the particles. IntegratingEg. (3) yields

N
F=z+ Z C,In(z
n=1

wherethe coefficientsC,, arethe residuesof the product
in (3) atthe pointsz = Qb n

Cy — Zy) l_[ — P, =

m'=1 " m
Thesecoefficientsare independenof the spatial coordi-
nate z but can vary with time. The map is conformal-
meromorphicandwe requirethereforethatit possesso
branchfar from the unit circle, viz., 55r Fd, = 0, where
I' is acontourat z — . UponintegratingEg. (3) it can
bereadily foundthatthis conditionimplies

> . =0, (5)
n=1

which canbe shown[1] to be equivalentto requiringthat

N N
> Z,=> P,. (6)
n=1 n=1

It would be appropriateto term condition (6) “dipolar
neutrality” becausethe different speciescan be regarded
as positive and negative chargesof a charge neutral
system. Equation(6) thenrepresentshe vanishingof the
dipolar sumof N two-dimensionalrectorseachextending
from a positive particle to a negative, with the pairs
chosenarbitrarily. The conditionsof chargeand dipolar
neutralityare necessaryor mappingthe unit circle in the
Z plane onto a simply-connectedcurve in the { plane.
Before continuing, let us make precisethe definition of
the secondspeciesin a one-speciesystem: Given K
particles, define a new particle Z, whose dynamicsare
suchthat the dipolar sumalwaysvanishesy X_, 7, = 0.
Now defineK + 1 imageparticlesby P, = —Z, asthe
secondspecies(poles). The new systemhas 2K + 2
particlesthat canbe describedy the presenformalism.

The description of the curve in Fourier modes is
obtainedas follows: Using relation (5), expandrelation
(4) in powersof z,

F=z+ Y diz% di=— ) cCpP, @
k;k k kﬂ; (7)

and take the limit z — exp(is). Note that the quantity
di+1 canberegardedhsthe kth momentof thedistribution
of P,, with (complex)weight C,,P,,. We point out that
the time dependenceof the curve entersonly through
the coefficientsd,(t). Theform of F(z) in (7) is called
univalent,a classof functionswhosepropertiesare well
known. In particular,for sucha functionto mapthe unit
circle onto a simply-connecteaurve, it is sufficientthat

- Pn)’ (4)

m' #n.
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the coefficientsd, satisfythe Bieberbachrequirement

ldg| = 2/(k + 1). (8)

This condition may be, however,too strong, an issue
that will be addresseclsewhere[2]. The aboveis the
bareresultof this paper:the mappingof a discreteMBS

onto an equivalenteontinuousplanar curve. Before we
continuewe notethatthe MBS canbe recoveredrom the
kineticsof thecurve: Giventheequationfor F(z,t), F =

F, where F is afunctionof F, VF, z, etc.,performthe
following Cauchy-integraklong a contour that contains
I,=2,0rpP,,

1

- ].’//F'dz=#f F'/Fdz.

2mi 2mi Jr,

This yields the equationof motion of that particle, I',, (=
—Z, or P,). Thustheseemingncreasen dimensionality
(finite — infinite) is an artifact of the nonlineartransfor-
mation, and the continuousdescriptioncontains,in fact,
no informationbeyondthe original system. Onecannow
translateany of the quantitiesthat areusefulfor the study
of MBS to the curve representatiorand vice versa. For
example ausefulmeasuralongthecurveis thecurvature
expresseasa function of the parametes. A straightfor-
ward calculationshowsthat, in termsof the positionsand
momentaof the particles, the curvatureis givenhby

<) = T {1 * Rez Z[ e H ®)

where €, = 1(—1) when a = a(b), representsthe
“charge” of the particle. Thus the value of the curva-
ture at eachpoint s along the planar curve is uniquely
determinedby the particularconfigurationof the particles
0., making the planar curve descriptiona one-to-one
representationf the particlesconfiguration.

Anotherquantityis the curve’sdynamicstructurefactor
definedthrough

dsds'dtdt’ N
Slg. @) = f O (5. 0)y(s', 1)eial s Hiwl=r),

n

Qm)*
(10)
Using Eq. (7) in (10) we find that
S(gq, @) = dg(w)dy(—w), (11)

where d;(w) is the Fourier transformof di(z). These
two quantitiescan also be usedfor a statisticalanalysis
of the curve’s shapeandits correspondenct the initial
system’sstatistics.

Next we want to derive the relation between the
dynamicsof the particlesand the motion of the curve.
Clearly, the evolution of the curve is dependenbn the
kineticsof the particlesthroughtheir equationsof motion,
(1) and(2). Theevolutionof the mapF(z, t) is governed

by the partial differential equation
N

F=S[eme - py - o],

n=I1 n

(12)
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Using their definition, the valuesof {C} canbe expressed
in temlsof {Q.}, whichin turn aregiven by the functions
g andh in Eqgs.(1) and(2). Thusthe entire sumon the
right-handside of (12) canbe expressedn termsof only
the momentarypositionsand momentaof the particles,
F = F({Z},{P}). Takingagainthe limit z — exp(is) in
F givesthe requiredequationof motion of y(s, 7), which
establisheshe correspondencbetweenthe curveandthe
MBS dynamics.

Hamiltoniandynamicalsystemsform a specialclassof
MBS, whereg and arerelatedby a scalarenergyfunc-
tion. Considera systemof two N-particlespecieswith the
Hamiltonian H({¢},{p}) and canonicalvariables{g, .},
{gbn}s {Pants {Ppny- The dynamicsfollow Hamilton's
equations:

JH _ oH
apa,n aCIa,n ’

In termsof the complexvariablesQ,, = gan + iPan,
Hamilton’s equationscanbe written as

Oan = _iaH/aQZ,n;

where Q> = g, — ip, is the complex conjugate of

Q4. Substituting relations (13) in (1) and (2), and

using the above formulation, gives the dynamicsof the

equivalentcurve. SinceHamilton’s equations(13), hold

in any dimensionwith the different spatial components
of the positions and momentatreated as independent
degreef freedom thenthe presentformalismmapsany

d-dimensionakysteminto a planarcurve.

For illustration, let us analyzetwo examplesthefirst, a
systemof (canonical)harmonicoscillators. For clarity,
I focus on four particles undergoingsimple harmonic
oscillationsin onedimension:

1 2
H=~ >

a=a,hb n=

éa,n = 5 ba,n = (13)

[Pan + don]s (14)
1
wherethe particles(andtheir dynamics)are symmetrical
aboutthe origin, asshownin Fig. 1. The generalization
to higherdimensionsandto more particlesis straightfor-
ward. Thetrajectoriesare

dan = Aa,n[xa,n + COit + ea,n)]’

Pan = dan (15)

where A, ,, x.,, and 6,, are, respectively,the am-
plitudes, the normalized central positions, and the
phasesof the oscillations. Since the b oscillators are
the mirror image of the a's at any time, the system
is automatically charge and dipolar neutral, and we
have A,1 = Ay2 = As, Xa1 = —Xa2 = Xx,, and
0u1 = 04n + T = 60,. The locationsof the polesand
the zerosare shown schematicallyin Fig. 1 both in the
(1D) real spaceand in the complex ¢g-p plane. Using
Eq. (4), we find that C; = (P} — Z})/2P, = —C,, and

FIG. 1. A systemof four harmonicoscillatorsin one dimen-
sion: (a) in real spaceand(b) in the complexplane.

the explicit curvetrajectoryis givenby

P — 7} n e =P
2P1 e"s + Pl )

This curve is an ellipse that oscillateswith time. The

Fourierrepresentatioifollows from (16):

dy = (Z} — PHPN 1 /k, kodd,

y(s,1) = " + (16)

di =0, 17)

From this expressionit is straightforwardto compute
Ziq(w) and,using(11), S(q, @), which turnsout to consist
of afinite numberof deltafunctions. The curvaturealong
the curveis givenin termsof the oscillatorsZ, and P, as

2is 2 is is
e — Pi e e
{1 i ZRGI: e2is — 77 ol — p} :”

e2is — le
(18)
As a lessstraightforwardexampleconsidera quadratic
dissipativedynamicalsystem

A = —1.55A%/3Ay + 0.2AB/3By,

k even.

) (19)

B = —5.5ByA>/3A} + 0.1B%/3B,,
with the initial conditionsA(r = 0) = Ag = 1/4/1.2025
and B(r = 0) = By = 1//4.24. The evolution of this
systemfollows:

A= A[2/(1 + 0.31) — 1/(1 + 0.150)],

(20)
B = Bo[11/(1 + 0.31) — 10/(1 + 0.15¢)].
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FIG. 2. A quadraticsystemof two variablesand their mirror
images:(a) the particlestrajectoriesin the g-p plane;(b) the
correspondingcurve evolution.

The assignedparticles are Z; = A + iA = —Z, and
P, = B + iB = —P,, and the curve representingthis
systemis thengivenby Eq. (16). The coefficientsd, are
givenby (17) andthe curvaturealongthe curveis
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2 p2
1+ Z=8
eZts _Zl
Zi — P}
x[1+2Re4 —= -t }
e?s — (Zi + Pi) + PiZiexp s
(21)

The trajectoriesof the particlesare shownin Fig. 2(a)

andthe correspondingurveevolutionin Fig. 2(b). With

time, y(s) changesfrom an elongatedtwisted form (at
t = 0) to an ellipse,while slowly rotatingin the process.
As t — o« the curvetendsto a circle dueto the decaying
solution.

To summarize,it was shown that any d-dimensional
many-bodysystem,confinedto within a finite support,
can be representedy a closedJordancurve in a com-
plex plane. The correspondencketweerthe dynamicsof
the particlesof the MBS andthe motion of the curvewas
established. It was shownthat an explicit expressiorfor
the curvaturealongthe curvein termsof the momentary
distributionof the particlescanbe given,andthe dynamic
structurefactorwasderived. Theapplicationto Hamilton-
ian andnon-Hamiltoniarsystemswvasillustratedwith two
exampleghat were analyzedexplicitly. It is emphasized
thatthedynamicsof the curve,which aregovernedoy one
partial differential equation(12), is completelyequivalent
to the finite setof discreteequationsg and i, andthere-
fore shouldbe usefulin analyzingmany-bodysystemsn
general. It shouldbe notedthat the conformalmapused
hereis only one of manythat can be employedto trans-
form a MBS to a curve,which makesthis formalismquite
flexible. The reductionof the descriptionto two dimen-
sions,ratherthanthe traditional hugephasespace,is ex-
pectedto lead to many advantagesin particular where
statisticalanalysesrerelevant. The applicationof statis-
tical mechanicatools to Hamiltoniansystemswithin this
formalismis currently one of the issuesbeing explored.
For practicalpurposesthe planarcurverepresentatiocan
help in datareductionand storage two key issuesin to-
day’s computational-orientetechnology. It canalso be
usedfor visual comparisorbetweensystemsandfor pat-
ternrecognitionby devicesusingvisual-like processes.
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