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A nonlinear conducting continuum system with a negative dynamic resistance is studied. 
The metastable solutions to Maxwell's equations are proposed to consist of narrow fluxes of 
currents and their properties are discussed. In systems containing pinning impurities an array 
of fluxes appears and a critical external current density is found, above and below which the 
system's behaviour is governed by the interaction and the dissipation, respectively. The size 
dependence of this critical value is found to be nontrivial. 

1. Introduction 

In this paper I discuss nonlinear conducting media whose J-E relation is of 

the form 

J(r) : o'(r) I E(r)lV-lE(r). (1) 

Real systems displaying such a behaviour have been discussed in the literature 
[1]. This equation, combined with the continuity relation 

div J = O, (2) 

has been shown to suffice for determining a unique solution to the electrostatic 
Maxwell equations whenever 3, > 0 [2]. For , / <  0, it was shown in discrete 
systems that there appear metastable solutions whose number may grow 
exponentially with the system's size [3]. In that case each metastable solution 
corresponds to a given configuration of current directions in the individual 
branches of the network. For the continuum systems, discussed here,  there is 
yet no understanding of the nature of the different solutions. In this paper I 
concentrate on the range - 1  < 3, < 0, and argue that in completely homoge- 
neous such conducting materials, each solution corresponds to a narrow flux 
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through which the entire current flows from one boundary to its opposite. 
Different solutions then correspond to different locations of this flux. Systems 
exhibiting such a negative resistance regime are, to a very good approximation, 
tunnel diodes (within a considerable range of their I - V  curve), and also 
two-dimensional Josephson junctions [4] ( y ~ - l ) .  I next discuss the case 
when there are small impurities that can pin a flux locally, so that many current 
fluxes traverse the medium. I find a different behaviour of the system when the 
external current density is smaller or larger than some critical value, J~c. This 
value is found to depend nontrivially on the aspect ratio of the bulk dimensions 
and to typically vanish when the separation between the terminals, L, becomes 
very large. When the flux lines are allowed to be very tortuous the dissipation 
energy is higher than in the straight line state and the critical current density is 
found not to depend on L when the bulk approaches a two-dimensional 
geometry.  

2. Steady state solution 

Consider a system constructed of the above nonlinear material occupying a 
volume between two conducting plates of surface a r e a  R 2 parallel to the x - y  

plane and located a distance L apart in the z direction, which are held at 
different potentials. The density of dissipated energy in this medium is given by 
[2] 

u ( r )  = + l )  , ( 3 )  

which, for - 1  < y < 0, is minimised locally by reducing the electrostatic field. 
However ,  inspecting (1) and (3), one can see that this leads to maximisat ion of 
the local current density. It follows that it is favourable for the system to drive 
as much current as possible through an as small as possible section area. This is 
in sharp contrast to the ordinary case of positive dynamic resistance, y > 0, 
where minimisation is achieved when the current is distributed as thinly as 
possible. Consequently,  in our medium, given that it is homogeneous,  the 
current will collapse into a narrow flux, whose location in the x - y  plane is 
determined by initial conditions and the distribution of local geometrical 
constraints (like grain boundaries, etc.). The width of this flux is determined by 
microscopic processes, whose nature is beyond the thrust of this paper. 

Next assume that the material contains impurities that do not let the current 
collapse into one flux. The current will then split to a number  of fluxes, each 
trapped in the potential well of a pinning impurity and one ends up with an 
ensemble of fluxes extending between the terminal plates. This paper is mainly 
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concerned with the properties of this system. As an illustrative example 
consider the case of just two such identical fluxes, each of which having radius r 
and whose centers are separated by a distance a. These can be envisaged as 
two wires carrying currents i in the same direction. Such two wires attract (see 
below for a detailed expression) and some mechanism is needed to pin them 
down, which is provided by the above postulated pinning impurities. For 
simplicity I assume that: (i) the fluxes are cylinders of radius r 0, all carrying the 
same current i 0 (ii) the conductivity of the material is constant, o'(r) = ~r, on 
length scales larger than the range of typical pinning potential well, but smaller 
than the system's size, and (iii) that the density of flux lines per unit area, n, is 
constant all over the sample. These amount to treating the system by a mean 
field approach, because under such assumptions each flux experiences the same 
field. It is evident that the situation is usually more complicated than this. For 
example, the current amplitudes in the fluxes can be distributed differently, the 
spatial distribution of the flux locations need not be uniform and their shapes 
may also be very convoluted. However,  even the above naive simplifications 
give rise to interesting phenomena and can serve as a framework for treating 
the system. 

There are three typical energies that determine the physics of this system: 
the dissipation within the fluxes, the interaction between fluxes and the 
interaction between the fluxes and the pinning defects. Not being concerned 
here with the pinning mechanism, I will consider the fluxes to be practically 
frozen. However,  a flux will eventually be allowed to fluctuate around the 
frozen straight state (see below). If the external current density is J0, then the 
current that each flux carries is i 0 = J o / n  and the energy dissipated in all of 
them is 

~ z T l + l / y /  2 -~ - 1/~,  
Ud = va o ~n~rroo- ) , (4) 

where V= L R  2 is the volume of the system. To find the interaction energy 
consider first the case of parallel flux lines. It is a textbook excercise to find 
that two lines, a distance r apart, experience an attractive force of the form 

F 2 =/*i~{[1 + ( L / r ) 2 ]  1/2 - 1}/2~r, (5) 

where /x  is the permeability constant. Integrating over the distance in F2(r), the 
interaction energy between a pair is found to be 

U 2 = Izi~L([1 + ( r / L ) Z ]  1/2 - r / L  - l n { L / r  + [1 + ( L / r ) 2 ] I / 2 } ) / 2 r r .  (6) 

Under  the assumption that the density of fluxes is high, the total interaction in 
the system is found by choosing a flux, integrating to find its energy of 
interaction with the entire system, and then summing over all fluxes. This leads 

to 
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Uin t : ( t x J ~ V L 2 / 6 )  

x ( [ 2 ( R / L )  2 - 1][1 + (R/L)Z]  ''2 - [2(a /L)  2 - 11[1 + (a/L)2] 'j2 

- 2(R 3 -  a3) /L  3 - 3 ( R / L )  2 I n { L / R  + [1 + (L/R)2]  '/2} 

ln{ L /a  + [1 + (L/a)2]'/2} ) , (7) 3 ( a / L )  2 + 

where a is now the separation between two neighbouring fluxes and will, for 
the moment ,  be assumed to be much smaller than both R and L. This 
expression can be simplified in the following limits: 

[ -i~JXoVR 2 I n ( L / R ) / 2 ,  L >> R >> a ,  

U i . t ~ I  [ V 2 - 1 -  31n(I + X/2)]txJ~VL2/6,  L ~ R > > a ,  (8) 

[ ,-  t z J~VRL/2  , R >> L >> a . 

The first and second relations in (8) correspond,  respectively, to a rod-like and 
a cubic bulk shape, while the third corresponds to a flat geometry.  The 
dependence of the interaction energy on the size of the bulk differs significantly 
in the three regimes. Fig. 1 shows the value of the dimensionless quantity 
Y ~  -2Uint / t zV(JoR)  2 as a function of L / R .  

3. The competition between interaction and dissipation 

Let us now consider the relative significance of the interaction and dissipa- 
tion. If the latter is very large, the lines will be essentially straight, unless 
otherwise dictated by the local grain boundaries, etc. If the reverse is true, the 
attractive interaction dominates the system's behaviour and may even distort 
the flux lines (but not unpin any flux line entirely, see discussion below). Since 
the system is in steady state rather than in equilibrium, there arises the 
question of how to compare the effect that these two quantities have on the 
system. Without interaction between the fluxes, one minimises the dissipation 
for finding the steady state, while without the dissipation the free energy is 
minimised for finding the equilibrium state. To avoid this fundamentally 
difficult issue, let us note that the dissipation increases linearly with the length 
of the flux as it bends and twists across the medium. This suggests that we may 
consider a spring-like potential energy that is proportional to the dissipation 
Ua ~,  and treat the system as in equilibrium. Therefore  we can now compare 
the two effects by studying the ratio X = [Ud[/[Uint[. We can see from (4) and 
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Fig. 1. The  dependence of the dimensionless interaction energy Y=--2U~nt/Vtx(JoR) 2 on the 
aspect ratio L/R.  The value of a/R is taken here to be 0.01. 

(8) that, for a given external current density, X always decreases with size, 
which implies that the interaction dominates the system's behaviour in the 
thermodynamic limit. 

This ratio, however, depends monotonously on J0- Hence by varying the 
external current density J0, one can change X at will. Examining (4) and (8), it 
follows that there exists a critical value Joc such that for J0 smaller than J0c the 
dissipation governs the line shapes and vice versa. This critical value corre- 
sponds to some constant value of X, and, therefore, by inverting the ratio 
above, the critical external current density is found to have the form 

I [R In(L/R)] -8 L .> R 

J0c - / ( R L )  -~ , R -> L ,  (9) 

l 
[L-2~ , R ~ L , 

• 1 A way to find the energy balance is to actually compare  the interaction energy gained by 
reorienting the fluxes in a new state, to the energy dissipated in the process. The latter is the power 
integrated along the t ime it takes a typical flux to move from the initial to the final states. 
Postulating naively that  this movemen t  is either adiabatic or at constant  small velocity, the results 
below are similarly obtained.  
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where 6---I~l /<l~l  + 1). Inspecting (9) one can observe that J0c decreases 
when: (i) L increases at a given R for L >> R, (ii) either R or L increases for 
R >> L, or when (iii) the system's size increases for L--~ R. The rates of this 

decrease are different and are characteristic to the different regimes. 

4. Tortuous fluxes 

Let us now relax the above assumptions and allow for fluctuations of the flux 
lines around the straight state. The mechanism causing these fluctuations is not 
relevant for the purpose of the following analysis, but some possibilities are 

discussed below. For simplicity, it will be assumed that the set of distorted 

fluxes can be related one-to-one to the former  set. This enables to use the 
above discussion without worrying about  significant changes to the spatial 

distribution of fluxes in the medium. When the fluctuations are small, both 
dissipation and interaction energies retain the above qualitative dependence on 
the system's dimensions and the above analysis still applies. Let now the 
fluctuations become wilder. In the ext reme case, each flux may assume a 
random-walk-l ike shape. Assuming the fluxes do not wind around each other,  

the functional form of the interaction energy does not change much (up to a 
possible numerical factor) due to the many changes in the orientation of the 

current,  which cancel out in the calculation of the net force F,. 
The dissipation energy, however,  does change. Under  the assumption that a 

is much smaller than both R and L, and approximating each flux as confined by 
its neighbours to a tube of radius a (to avoid intersection and convergence with 
neighbouring fluxes, thus following the above assumption that the concen- 
tration of fluxes does not undergo significant changes), the dissipation increases 
proport ionally to the increase in the length of the flux. Due to the fact that the 
random walk fills the tube, the length of the flux is of order  aL. Hence the 
dissipation increases by a factor of a and the above bulk size dependence of X 

is retained. It follows that the L-dependence  of J0~ does not change as well. 
However ,  keeping R fixed and reducing L, such that R >> a >> L, the length of a 
random-walk line becomes of order  L 2. The interaction retains the limiting 
functional dependence on L given in (8) and X can now be written in the form 

X ~- 2J,~/~ ~(n~rr~cr) ~'VR, (lo) 

which is independent of  L. It  follows that J0c reaches a finite lower value as L 
decreases towards the two dimensions limit. Note that this result holds only if 
the flux lines resemble random walks. If their length scales as L" with u strictly 
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smaller than two, then the right-hand side of (10) should be multiplied by L u-2 

and J0c decreases with L, although slower than in the former case of straight 
lines. 

5. Discussion 

To conclude, it has been suggested here that the nonlinear conductivity law 
(1), with - 1  < y < 0, allows for stable local maxima of the current density, 
which in the presence of pinning impurities leads to separation of the current 
into individual fluxes. I have discussed the mechanisms that govern the 
behaviour of the fluxes and found a critical external current density at which 
the system crosses over from being determined by the interaction to being 
controlled by the dissipation. This critical value has been found to decrease 
with the system's size, as long as either the fluxes do not assume random-walk- 
like shape, or the system is essentially three dimensional. When the flux lines 
do perform random walks, there appears a crossover from three to two 
dimensions, where the critical current density reaches a finite lower value 
independent of L. Note that in this context, the system becomes two dimen- 
sional when L ~ a rather than merely L ~ R. 

Distortions of the fluxes from the straight line shape can occur due to: (i) 
local geometrical constraints that force the current fluxes to bend, (ii) high 
local attractive interactions that are sufficient to unpin parts of flux lines and 
also to overcome the additional dissipated power, and (iii) thermal fluctuations 
that are sufficiently large to disturb the straight line state. 

One implication of the above analysis is the possible occurrence of a 
"distortion transition" due to the increase of the interaction-to-dissipation 
ratio. When this ratio is small, the lengths of the fluxes are dominated by the 
dissipation and are in principle proportional to L. As it increases, the fluxes 
may favour highly tortuous configurations to minimise the free energy. 

The introduction of temperature fluctuations, as another  distorting mechan- 
ism, is subject to some limiting constraints, if the analysis presented here is to 
remain valid. In the foregoing it has been implicitly assumed that the tempera- 
ture may be high enough to unpin flux lines from the pinning potential wells, 
but that it is not sufficient to remove them too far away from their initial 
immediate neighbourhood. Thus, increasing the temperature creates a new set 
of flux lines that can be topologically mapped in a one-to-one fashion into the 
set for lower temperature,  where the lines are approximately straight. It is also 
implicitly assumed that the typical time for a flux line to change shape is long 
compared to the time of observation, so that a frozen system of flux configura- 
tions can be considered. It is interesting to study this system without these 
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assumptions. Unlike the physics of magnetic fluxes penetrating superconduct- 
ing media, the flux-flux interaction in our system is attractive only. Hence, 
while magnetic fluxes may form a two dimensional lattice in superconducting 
materials, our current fluxes cannot (unless the pinning defects themselves are 
prearranged in such a lattice). Nevertheless, the study of these conducting 
systems may yield insight for the statistics of fluxes in other media, e.g., for 
current carrying attracting polymers or for reversed miscelles. 
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