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Abstract

A recent theoretical model (Blumenfeld, Phys. Rev. Lett. 76 (1996) 3703) is described for modes I and III crack

propagation dynamics in noncrystalline materials on mesoscopic lengthscales. Fracture has been one of the longest

standing problems in physics and materials science, and despite much e�ort, several fundamental issues have stubbornly

resisted resolution:

(i) Running cracks reach a steady-state velocity of roughly half the shear wave speed, while theoretical predictions

based on energetics are twice as high. The discrepancy originates from dynamics, but a consistent dynamical model has

been slow to emerge.

(ii) There is little understanding of the mechanisms for crack initiation and arrest and the hysteresis between them.

Lattice trapping, although relevant on the atomic scale, cannot explain this phenomenon on mesoscopic and macro-

scopic scales.

(iii) Another intriguing phenomenon is appearance of velocity periodic oscillations in some materials and the relation

between this and material properties.

(iv) As a result of the above issues, there is currently no consensus on the form of the equations of motion that

govern mesoscale fracture dynamics.

Whether explicitly or implicitly, most traditional models use quasi-static and near-equilibrium concepts to analyse

the dynamics of propagation. It is argued here that such approaches are bound to fail. Two reasons are responsible for

this and consequently for the dire understanding of this problem: First, most fast fracture processes are usually re-

stricted to post-mortem measurements of the already fractured system, while the process itself is too fast to capture.

Only recently there emerged experiments where the dynamic process is continuously monitored. Second, it is strongly

contended here that the fracture phenomenon is governed by di�erent mechanisms on di�erent length-scales, a crucial

aspect that has not received su�cient attention. In ideally brittle propagation, the crack is atomically sharp and

therefore atomic potentials are important (5±10 �A). Anharmonicity plays a signi®cant role on this scale due to large

local strains at the crack tip, which gives rise to a strong nonlinear behaviour. On large scales (>lm), continuum linear

elasticity describes quite well the stress ®eld and the far-away elastic energetics. This is exactly because cracks propagate

slower than the bulk speed of sound, which allows the bulk stress to relax to its static value in the frame of the moving

crack. Ultimately, this is the reason why contour integral calculations of energy in¯ux into the crack tip are valid as long

as the contours are taken well away from the tip. Between the atomic and the continuous scales there are at least two

more relevant length-scales: One is that of the cohesive zone, which is the region where the continuous stress ®eld

description breaks down due to the discreteness of the lattice. It is of the order of several lattice constants and about one

order of magnitude above the atomic scale (�10±50 �A). The fourth length-scale, and the one we focus on here, is that

de®ned by the sizes of the nano- and microcracks that form dynamically in front of the propagating tip. Traditional

continuum theory cannot be used on this scale due to the strong inhomogeneity. Smoothing the disorder by wishful
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homogeneization methods does not work for reasons to be detailed in this presentation. A strongly disordered region

ahead of the crack is indeed observed experimentally (processing zone). We suggest here that on this `dynamic scale' the

local stress ®eld ahead of the crack front relaxes very slowly, which gives rise to a supersonic-like local behaviour even

though macroscopically the crack propagates slower than the shear wave speed. This leads to shielding of the tip from

the far ®eld energy equilibration and therefore to a far-from-equilibrium process. The mesoscale-dominated dynamics

do not invalidate the long range continuum quasi-static calculations, as long as the latter are applied not to the bare

crack tip, but rather to the tip `dressed' by the processing zone.

Starting from the idea that the tip responds to the local stress, an equation of motion is derived from ®rst principles.

The resulting dynamic equation is solved exactly and analysed. A rich propagation is found: the crack either propagates

at a steady state speed, which can be predicted from material properties, or the speed oscillates periodically. Which

mode is chosen depends on one material parameter. Possible sources of noise are discussed next and it is shown that

noise can strongly modify the dynamics into: quasi-periodic propagation, intermittent propagation, or a range of noise-

driven steady states. The analysis of these behaviours is outlined and future directions are suggested. Ó 1998 Pub-

lished by Elsevier Science Ltd. All rights reserved.

1. Introduction

The e�ort to understand the dynamics of crack
propagation is nearing the end of its eighth decade
and, although experimental measurements are be-
coming ever more accurate, the theoretical un-
derstanding is still far from complete. The need for
better materials and smarter designs has usually
su�ced in other ®elds to rapidly clinch funda-
mental understanding. Yet the physics of fracture
is still a puzzle and, if anything, better measure-
ments seem to only invalidate traditional ap-
proaches rather than lead to better models. Quite a
few fundamental issues have stubbornly resisted
resolution. For example, many observations made
on quasi-two-dimensional systems indicate that
running cracks reach a limiting steady-state
propagation velocity of about half the shear wave
speed (SWS). Predictions of the limiting velocity
date back to Mott [1], who used an energy balance
argument, originally proposed by Gri�th [2], to
suggest the existence of such a velocity. Later [3],
this velocity was proposed to be the Rayleigh wave
speed (RWS), which is the speed at which surface
waves propagate along the (idealized) crack sur-
faces behind the crack front. The reason for the
factor of two discrepancy between predictions and
measurements is not explained within the para-
digm of energy balance considerations. Another
poorly understood issue concerns the physical
mechanisms for crack initiation and arrest and the
reason for the stress hysteresis between the two

[4,5]. Lattice trapping [6] on atomic length-scales is
related to this issue and an initial understanding of
this phenomenon in the microscale starts to
emerge [7]. However, this aspect of the problem
remains unexplained on mesoscopic and macro-
scopic scales. Another puzzle, which came to the
fore in recent years, is the origin of the observed
periodic-like oscillations of the propagation ve-
locity in amorphous polymeric materials such as
PMMA [8,9] and the relation between this obser-
vation and the properties of the material. Finally,
an important problem concerns the relation be-
tween material properties and the morphology of
the fracture surfaces that are left behind. These
surfaces are rough on many length-scales, which
characterizes them as fractal or self-a�ne. The
current interest concerns the question whether the
roughness can be related to the material tough-
ness, if yes how, and how do the propagation dy-
namics a�ect the roughness. Partly as a result of
the above problems, there is at present no con-
sensus on the form of the equations of motion that
govern continuum fracture dynamics. The growing
body of experimental results seems only to add
more un®tting pieces to the puzzle, a state of af-
fairs that usually points to a problem with the
basic understanding of the physical phenomenon.

Most of the approaches to model this problem
were based, whether explicitly or implicitly, on
quasi-static and/or equilibrium concepts to derive
the dynamics of the propagating crack. Rather
than resolving the above and related problems, the
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resulting models seem to emphasize the inade-
quacy of traditional approaches in tying all the
loose ends. It appears that there are two main
reasons for this situation. The ®rst is experimental:
Data on fast fracture processes are still restricted
mostly to post-mortem measurements, while the
process itself is too fast to capture by many of the
current experimental devices. As a result, on-the-
¯y analyses are still few and far between and only
recently there emerged experiments where the dy-
namic process can be continuously monitored. The
second di�culty, however, is in this author's
opinion, the main culprit for the theoretical dire
straits: Fracture dynamics are governed by di�er-
ent physical mechanisms on di�erent length- and
time-scales. This aspect, although appreciated in
principle, never received the full attention that it
deserves and therefore it is worth some elaborating
on. In ideally brittle propagation, the crack tip is
atomically sharp, which means that atomic po-
tentials are signi®cant. This points to the relevance
of the physics on scales of 5±10 �A. For large
length-scales (>lm), continuum linear elasticity
seems to do a good job in describing the stress ®eld
and the far-away elastic energetics. This is basi-
cally because, as mentioned above, fractures grow
slower than any of the bulk speeds of sound. Since
the bulk stress relaxes to its static value at a rate
that is faster than the propagation rate the mac-
roscopic system can be considered quasi-static in a
frame of reference that moves with the crack front.
This is also the basis for the seeming validity of
utilizing energetic approaches for the far ®eld.
However, between the atomic and the continuous
there are at least two more relevant length-scales.
One is that of the cohesive zone. This is the region
where the continuous stress ®eld description
breaks down and the stress-divergence needs to be
modi®ed due to the discrete lattice e�ects. This
length-scale is of the order of several lattice con-
stants, �10±50 �A.

The fourth length-scale, and the one we focus
on is de®ned by the sizes of the microcracks that
form dynamically in front of the propagating tip.
In the following, the term microcracks will be used
generically and the sizes involved can range from a
few tens of nanometers to microns. Now, since this
scale is larger than the cohesive zone, one could

presume the continuous description should hold.
Although correct in principle, continuum theory is
di�cult to apply due to the strong disorder, which
translates into many small complex boundaries.
These boundaries need to be taken into consider-
ation when solving for the continuous stress and
strain ®elds, which is an impossible task in prac-
tice. This de®nes the mesoscale regime which
consists of a window of length-scales that is well
above the atomic to be considered continuum, but
still far below the macroscopic regime where the
medium is homogeneous. An attempt to gloss over
the disorder by simple homogeneization is doomed
to fail for the dynamical problem. Microcracks
that nucleate from vacancies or dislocations form
a region whose size can be up to few microns in
front of the moving tip. This region is called the
processing zone (PZ) and is frequently observed
experimentally.

The main contention here is that the macro-
scopically observed dynamics of crack propaga-
tion are governed by this disorder and therefore
depends crucially on the physics in this mesoscale.
Basically, the microcracks in the PZ scatter shear
waves (and other sound waves) on a wide range of
wavelengths and therefore suppress the local stress
relaxation rate. Being strongly disordered, the
speed of sound in the PZ will be then markedly
lower than in the homogeneous material. The at-
tenuation of the shear waves becomes more pro-
nounced with increasing microcrack density and is
therefore expected to be strongest very close to the
tip. Since it is through the various sound waves
that the stress and strain relax, it is suggested here
that on this `dynamic scale' the stress ®eld relaxes
su�ciently slowly very close to the crack tip so
that the actual propagation becomes swifter than
the local stress relaxation rate. This gives rise to a
supersonic-like behaviour in spite of the fact that
macroscopically the crack still moves well below
the speed of sound. It should be emphasized that
the unusual short-range-dominated dynamics do
not invalidate the long range continuum energy
calculation as long as it is remembered that these
calculations apply not to the bare crack tip, but
rather to the tip `dressed' by the processing zone.

A few dynamical models for crack propagation
were proposed recently for the propagation
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dynamics that account for the reduced limiting
speed [10]. Generally, these models consist of
writing down a phenomenological equation of
motion that treats the tip as a massive particle with
inertia and dissipation. The connection of such a
phenomenological approach to the local physics
that govern the dynamics on the length-scales of
the PZ is far from clear. Moreover, in view of the
nonlinear behaviour that ensues on various length-
scales it is not very likely that the right dynamic
equation can be found by this approach.

Very close to the tip, the continuous stress ®eld
drops as an inverse square root (e.g., in mode III
fracture or the Yo�e solution for mode I [11], see
below). The angle-independent prefactor of the
inverse square root, termed the stress intensity
factor K, is de®ned via

rab � Kfab�h�=
�������
2pr
p

; �1�
where rab is the stress tensor element, r is the
distance of a point in the plane from the moving
tip and fab is a tensor element that depends only
on the azimuthal angle h, and which can be ob-
tained using formal expansions in a complete set
of basis functions (e.g., Legendre polynomials).
Traditional treatments regard the stress intensity
factor as a key quantity that is presumed to be
modi®ed as the crack moves. All dependence on
time, propagation speed, the cracking mode (I, II
or III), and the propagation history are usually
lumped into K and much e�ort goes into under-
standing the nature of this dependence. We argue
here that this approach may miss quite important
underlying physics. The form of Eq. (1) is based
strongly on the assumption that the propagation is
quasi-static. Namely, it is usually taken for
granted that the stress ®eld near the tip relaxes to
its static value su�ciently fast such that the stress
®eld has essentially the static form when viewed in
the tip's moving frame. Under this assumption the
crack tip coincides with the singularity of the
stress ®eld (r ® 0 in the continuous description).
While the aforementioned observations of mac-
roscopic subsonic propagation seem to support
this view, there is a leap of faith from the fact that
the crack propagates subsonically on the contin-
uum scale to the conclusion that the crack dy-
namics are dictated by the far-®eld energetics.

A necessary condition for balancing the elastic
and surface energies is that the ¯ow of informa-
tion to the tip about the changing stress ®eld is
locally faster than the propagation rate. However,
existing evidence [12] strongly suggests that this is
not the case. In particular, the measurements in
[12] showed a signi®cant reduction in the local
stress relaxation rate after crack arrest, with the
relaxation time being of order of tens of ls. To
appreciate the signi®cance of this observation,
recall that relaxation of the stress ®eld to its static
value in the homogeneous bulk would have been
almost an order of magnitude faster! Due to this
slow local relaxation, the tip is in fact shielded
from the far ®eld by the highly inhomogeneous
PZ. This shielding from the global behaviour, el-
evates the importance of the near-tip mesoscale
physical mechanisms that dominate what becomes
a strongly nonequilibrium process. Ultimately, it
is the nonequilibrium nature of the problem that
invalidates the energetic considerations: With
cracking a new boundary forms in the continuous
material and the information that such a boun-
dary has formed travels ahead of the crack at a
much reduced speed. Comparing the slow local
relaxation rate with the observed propagation
speed, it is seen that locally the crack propagates
at a speed that is higher than the relaxation rate.
Thus, the tip travels ahead of the wave front that
relaxes the ®eld and the stress near the tip is lower
than the static value. It is emphasized that the
supersonic-like scenario applies in spite of the
observed macroscopic subsonic propagation.
Other than calling into question the assumptions
that underlie traditional treatments, a locally su-
personic propagation casts doubt on the utility of
the stress intensity factor in Eq. (1). Nevertheless,
since K has been measured in many experiments,
we will provide a mapping between the results
obtained here and this quantity to allow for a re-
interpretation of existing experimental results in
the context of the proposed theory.

In this presentation, we derive from ®rst
principles, rather than assume, the form of the
equation of motion of the crack tip. Starting
from the idea that the tip responds to the local
stress ®eld, and that the stress ®eld relaxes slowly
relative to the homogeneous bulk, we ®rst obtain a
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time-dependent equation for the evolution of the
tip stress. This equation is nonlinear but it is
amenable to detailed analysis and even to a formal
solution. Further postulating a generic (not spe-
ci®c) form of the local velocity-stress response, the
analysis can be made explicit and quantitative re-
sults are obtained. The velocity-stress response can
be inferred both from experimental measurements
and from a recent ®rst-principles calculation on
atomic systems [7]. This parameter-free approach
turns out to give rise to rich propagation dynamics
even in the absence of noise. Noise, however, is
inherent to the fracturing process even at zero
temperature, and should not be left out in any
serious attempt to model the fracture process. The
noise can originate from various origins: First, on
atomic scales, the atomic bond breaking events are
very violent and excite vibrations which in turn
may (or may not, see below) spread in the system.
Second, the distribution of the microcracks in the
PZ introduce ¯uctuations because of the local
change in material properties that the tip experi-
ences. We discuss e�ects of noise and show that it
can strongly modify the dynamics. Speci®cally,
depending only on one material parameter, k, and
the noise characteristics, the crack tip can display
various behaviours: Steady propagation at a con-
stant limiting velocity, periodically oscillating
propagation, intermittent propagation, or a range
of noise-driven steady states and quasi-periodici-
ties.

2. Kinetics of crack propagation and equation of

motion

The crack propagates through continuously
generating a new surface. The stress ®eld adjusts to
the new boundary that forms via sound waves that
travel in the medium. Within the traditional pic-
ture the stress ®eld relaxes at the speed of the
Rayleigh waves which travel along the newly
formed surfaces. This picture is attractive due to
its simplicity but it su�ers from a shortcoming in
that it is not consistent with observations that the
surfaces that are left behind are rough on a large
range of length-scales. With such roughness it is
di�cult to understand how exactly the surface

waves can propagate freely. This is because
roughness acts as disorder and would tend to en-
hance nonlinear e�ects that can range from local-
ization to nonlinear vibrational excitations on
these scales. Moreover, the interaction of the sur-
face waves with the vibrating medium is hopelessly
complex to analyse and a simplistic energy-based
argument can hardly do any justice to it, let alone
predict the rate at which energy is transferred
along the surface.

A careful consideration of the atomic motion
near the tip [7] reveals that the relevant sound
waves that propagate the relaxation from the tip
to the rest of the system are in fact the local shear
waves. In the following we assume, for simplicity,
that the local SWS, c, is constant and indepen-
dent of the degree of inhomogeneity. This as-
sumption is made to simplify the derivation of the
equation of motion, but is not essential. This
speed is well below the bulk SWS, as discussed in
the introduction. It will be shown in a di�erent
report [13] that, when this assumption is lifted,
one can still, write, solve, and analyse the equa-
tion of motion with the analysis being only little
modi®ed.

To derive the dynamic equation for mode I,
consider the expression for the stress ®eld just
ahead of the moving crack, as derived in [11]

r � r1
f� a�������������������

f�f� 2a�p ; �2�

where f is the distance from the tip, r1 is the mode
I tensile stress that is applied perpendicular to the
propagation axis far away from the crack, and a is
the crack's length, which is assumed to be con-
stant. We rescale in the following the stress and
write it in units of r1; r! r=r1�> 1�. The above
solution assumes implicitly that the singularity of
the stress ®eld occurs at the tip, f� 0, and in-
creases as rtip � fÿ1=2 as the crack tip is ap-
proached, i.e., when f« a. The singularity is cut o�,
of course, on the scale of the cohesive zone (�10±
50 �A), which is assumed to be well below the
(meso)scale of interest here. While at subsonic
propagation (tip velocities below the local SWS)
the stress ®eld singularity coincides with the crack
tip, the local supersonic propagation separates the
two. This is because the stress ®eld at the tip
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cannot relax su�ciently fast and therefore the
singularity of the ®eld lags behind. This separation
can persist even when the tip velocity drops below
the SWS since it takes some time for the shear
wave to catch up with the tip. We can now re-in-
terpret Yo�e's solution if f is regarded as the
separation distance between the crack tip and the
singularity in the stress amplitude. Eq. (2) gives
then the stress at the crack tip when the tip is ex-
actly a distance f ahead of the singularity. Thus,
the stress at the tip, rtip, is obtained from Eq. (2)
by putting f � �lÿ ct�H�lÿ ct�, where l is the tip's
position along its path and H�lÿ ct� is the
Heavyside function which ensures that when the
shear wave does overtake the tip �lÿ ct ! 0��
then the stress converges to the static value in the
moving frame and remains at that value for all
l < c.

The behaviour of the crack propagation for
l < ct �H � 0� is well studied [14] and need not be
repeated here. It su�ces to focus only on the case
H� 1 (i.e., when the tip precedes the singularity).
For propagation dynamics that mix both H� 0
and H� 1 one simply pieces the analytic solutions
together along the path. Note that the analysis
presented here does not require that the tip prop-
agate at a straight line. Rather, the local tip ve-
locity, v� dl/dt, should be measured along the
crack path irrespective of the path's geometry.
Taking the time derivative of Eq. (2), we obtain

dr
dt
� ÿ df

dt
a2

�f�f� 2a��3=2
: �3�

In what follows, the subscript from the tip stress
can be omitted and use r instead, except where it
may lead to confusion with the stress ®eld. Using
Eq. (2), express f in terms of r and rewrite
df=dt � vÿ c. Recalling then that v� v(r), Eq. (3)
can be manipulated to yield

dr
dt
� ÿ 1

a
�v�r� ÿ c��r2 ÿ 1�3=2

: �4�

This is the equation that de®nes the time evolution
of the stress tip as the crack propagates. Now solve
Eq. (4) by quadratures and, following a straight-
forward manipulation, the time dependence of r
can be obtained:

t � ÿ a
c

Zr�t�
ds

u�s��s2 ÿ 1�3=2
: �5�

In this relation, u(r)� [(v(r) ) c)/c] is the (di-
mensionless) reduced velocity. Relation (5) is in
fact the formal solution to the kinetics of the tip
stress and forms the basis of the analysis. From
this solution r(t) is found which can be substituted
into v(t) to ®nd v�t� � v�r�t��. The latter can, in
turn, be integrated to give l(t) and f(t). It is im-
portant to emphasize that the solution (5) is an
exact derivation from the Yo�e solution and the
only assumption that goes into it is that the local
propagation rate depends on r alone. When v
depends on other variables (e.g., explicitly on time)
the equation of motion (4) still holds true but
Eq. (5) should be modi®ed.

The stress intensity factor can now be re-inter-
preted for its dependence on time, velocity, and
history, in terms of the above solution: Experi-
mental setups usually measure the stress at some
small ®xed distance d0 ahead of the propagating
crack tip (for clarity, ignore the azimuthal depen-
dence). This distance usually depends on the
measurement method. Since it is measured from
the moving singularity, this distance is in fact
f � d0 � c

R
u�t� dt. By writing the dimensionless

stress at that point both in terms of the stress in-
tensity factor and the Yo�e expression, there re-
sults

r�d0� � f� a�������������������
f�f� 2a�p � K

r1
����������
2pd0

p : �6�

A simple manipulation of the two rightmost
parts of this expression leads then to the time and
velocity dependence of the stress intensity factor,

K � K0

1� a=f��������������������
1� 2a=f�p ; �7�

where K0 � r1�2pd0�ÿ1=2
is a constant. Thus, the

stress intensity factor depends explicitly on
f�t� � �l�t� ÿ ct�H�lÿ ct�, and we can now under-
stand the origin of the observed time and history
dependencies. We suggest that relation (7) can be
helpful in checking this theory against existing
experimental measurements of K.
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3. The equation of motion: Analysis and fracture

kinetics

Now proceed to analyse in detail the solution to
the equation of motion, (5). To make progress, we
need some information for the form of the local
velocity response to the stress, v(r). Many reports
in the literature suggest that the speed vs. stress
behaviour is hysteretic with two material-depen-
dent thresholds: rh, above which crack propaga-
tion initiates and rl < rh, to which the stress has to
drop for the crack to halt (arrest) [4,5]. It has also
been observed that for stresses higher than rh, the
velocity increases very slowly as the stress is in-
creased [15]. This also agrees with reports that, in
this regime, considerable changes in K seem to
have little e�ect on the velocity [16]. All these ob-
servations suggest a generic form of v(r) which is
shown in Fig. 1. Along the upper branch of the
hysteretic curve the velocity increases slowly with
r, while along the lower branch the velocity can be
either identically zero (complete arrest) or very
small (creep). As will become clear below, the
dynamics of the propagation is essentially deter-
mined by the location of the SWS, c, relative to the
speed vl on the response curve. For later reference,
it is convenient to classify the behaviour in terms
of the dimensionless material dependent parameter
k º c/vl.

Now turn to a discussion of noise-free propa-
gation. This term does not mean that ¯uctuations

in the local parameters and ®elds are completely
absent, but rather that these are negligible on time-
and length-scales that are relevant to: (i) the
equation of motion, and (ii) to measurement times.
Di�erently put, there may well exist rapid ¯uctu-
ations on short time-scales, but we assume in this
section that these either cannot be observed or that
they do not a�ect the slower mesoscale dynamics
(fast versus slow degrees of freedom). We consider
then the propagation process within the context of
an e�ective continuum (EC) whose properties are
di�erent from the bulk material. The EC is a good
description when the number of microcracks is
large enough to e�ect rapid ¯uctuations and the
microcrack sizes are su�ciently small so that an
individual ¯uctuation due to a large microcrack
cannot be detected. When these conditions are
met, Eqs. (3)±(5) provide a good model for the
motion of the tip. The alternative scenario, when
large microcracks exist and can give rise to mea-
surable stress ¯uctuations at the tip, will be dis-
cussed in detail later on when noise is incorporated
into the model.

In principle, propagation in the noise-free con-
text can be divided into two cases that lead to
di�erent dynamics:

3.1. k > 1

In materials where this relation holds, the value
of c corresponds to a point, F � �rc; c� that is
located on the upper branch of v(r). If we inspect
the integrand on the right-hand-side of Eq. (5), we
can see that it is regular at the point F. The be-
haviour at the vicinity of this point can be found
then by a standard linear analysis, which readily
yields

jrÿ rcj � Const: eÿcs; �8�
where

c � �r
2
c ÿ 1�3=2

a
dv
dr

� �
rc

:

In the above expression, we observe that the de-
rivative of v(r) is continuous and positive in the
neighborhood of F, which means that c is positive.
Thus, if the system is at a state near the point F, it
will converge to it at a rate that is determined by c.Fig. 1. A generic form of the constitutive relation v(r).
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It follows that F is a stable ®xed point of the
equation of motion for all k > 1. In the units that
have been chosen above we have rc > 1 and
0 < �dv=dr�rc

< 1 [15,16]. To estimate the value of
c we recall that: (i) the continuous description
pertains to length-scales larger than the cohesive
zone, r0 � 5 nm, and (ii) the typical velocity of the
steady state in, say, PMMA is c � 500 m/s. Thus,
typical times are of order r0/c � 10ÿ11 s. It follows
that the relaxation to the steady state from a state
in the vicinity of F is so swift that small ¯uctua-
tions are not only practically invisible by current
measuring techniques, but they also occur at time-
scales that are only two or three orders of
magnitude above atomic vibrations. A typical re-
laxation of the system to the steady state is shown
in Fig. 2.

The solution represented by the stable point F
should be interpreted as a settling of the crack tip
into a steady propagation rate, c, during which the
local stress at the tip is constant at rc. We propose
that this is the steady state which is frequently
observed in experiments. Special attention should
be given to the fact that the steady-state speed is
exactly the local SWS c. This has an important
implication in interpreting experimental data. It
also di�ers from the traditional view that this
speed is the same as the speed of the Rayleigh
waves along the fracture surfaces.

Another piece of information from the litera-
ture pertains to the location of F on the curve of
v(r). Immediately after crack initiation, the stress
intensity factor drops and then stabilizes at a ®xed
value [4,5,15]. This phenomenon has been attrib-
uted to inertial e�ects [4] but, in view of the above
analysis, this may suggest that in those materials
the system slides down along the upper branch
after crack initiation, until it reaches the ®xed
point F and the stress saturates to rc. It thus
means that in these systems rh>rc>rl . Moreover,
the fact that this decrease is observable on time-
scales that measurements can detect indicates that
either or both scenarios occur: (i) the interval
rh ÿ rc is quite large, and (ii) dv/dr is indeed small
along the upper branch. A detailed analysis is
suggested for the time dependence of the drop in
the tip stress after initiation is likely to yield the
actual form of v(r) along the upper branch near

and above the stable ®xed point. Note, though,
that in materials where rc > rh the system will
slide upward after crack initiation, which again can
be utilized to chart the constitutive v±r relation
below rc.

A word of caution: the above steady-state so-
lution and its interpretation are based on noise-
free analysis. It is shown below, however, that
noise can drive the systems into a di�erent steady
state, whose measured limiting velocity is lower
than c. Therefore, the limiting velocity data should
be carefully interpreted, taking into consideration
the history of v(t).

3.2. k < 1

The second important case is c < vl and it is
useful to consider it qualitatively ®rst. Suppose
that at a given moment the crack is propagating at
some speed, v, that corresponds to a particular
state (point) along the upper branch. Since on the
upper branch v > c, the tip propagates faster than
the relaxation of the stress ®eld and the tip stress
steadily decreases. This can be best seen from re-
lations (4) and (5) that show that the system will
slide down the upper branch with both the tip
velocity and stress dropping simultaneously. Un-
like the previous case, since there is no ®xed point
on the upper branch, the system is unable to
converge to a steady state and, on reaching the left
end of the upper branch, Fl � �rl; vl�, it goes over
the edge and drops to the lower branch. On the
lower branch, the crack settles either into a tem-
porary arrest (if vlb� 0) or a slow creep (if vlb > 0).
Now, the shear waves that have been lagging be-
hind start to catch up and the stress at the tip
builds up. The increase in stress pushes the system
up along the lower branch until it reaches the
crack-initiation value, rh. At this moment the
crack jumps back to the upper branch and the
crack bursts away again. Propagating now at
v > c, the crack tip is faster than the stress relax-
ation front and the tip moves away from the stress
singularity, causing both the tip stress and the tip
velocity to decrease again. The system then slides
down the upper branch and the cycle repeats itself.
This repetition gives rise to a periodic propagation
behaviour.
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With this picture in mind, calculate the char-
acteristic times involved in the periodic process.
Denoting by T the full cycle period, this period
consists of the time that the system spends moving
from rh to rl along the upper branch, and then in
the opposite direction along the lower branch.
Using relation (5) T can be written as

T � a
c

Zrh

rl

uÿ1
ub

�s2 ÿ 1�3=2
ÿ uÿ1

lb

�s2 ÿ 1�3=2

" #
ds �9�

where uub and ulb are, respectively, the reduced
velocities along the upper and lower branches.
Note that ulb is negative (v < c) and therefore both
the terms in the integrand are positive. A typical
periodic state is shown in Fig. 2. A complete crack
arrest on the lower branch (vlb� 0) corresponds to
ulb�)1, while creep corresponds to ulb�)1 + e,
where e > 0. For illustration, consider the follow-
ing constitutive relation

vlb � 0; vub � v0�r2 ÿ A�
r2 ÿ 1

�10�
where A� (v0 + c/v0). The ®rst term on the right
hand side of Eq. (9) yields

Tub � a
2c

ln
aÿ yl

aÿ yh

a� yh

a� yl

� �
; �11�

where a � �v0=c�1=2
; yk � ÿrk=�r2

k ÿ 1� and k is
either h or l. The second term on the right-hand
side of Eq. (9) yields

T0;l � a
c

Zrh

rl

ds

�s2 ÿ 1�3=2
� a

c
��������
rlyl
p ÿ ���������

rhyh
pÿ �

: �12�

Thus the entire cycle period is

T � Tlb � Tub � a
c

yh ÿ yl � ln

������������
aÿ yl
p
aÿ yh

a� yh

a� yl

� �
:

�13�
For e� 1 (slow creep) expand the expression for
the time spent on the lower branch and ®nd that to
®rst order in e

Tl � T0;l�1� e�:
When e is of order 1 the lower branch does no
longer describe slow creep, but rather, the lower
branch increases appreciably. The system may
then experience not only two velocities for a given
value of the stress but also two stresses for a given
velocity, which happens when v�rh� > v�rl�. The
occurrence of this interesting situation may in fact
be supported by observations in PMMA where
low values of velocity ¯uctuations seemed to be
well above zero [9]. This scenario can be studied
straightforwardly along the lines outlined in the
above analysis. We avoid going down this path in
order to keep this presentation clear.

This analysis is not complete without mention-
ing the marginal case of k� 1, which is relevant
only theoretically in the context of absolute noise-
free propagation. In this case the point F is at
Fl � �rc � rl; c � vl� and the propagation dy-
namics depends strongly on the behaviour of (dv/
dr)F , when F is approached from above. If the
slope at Fl is ®nite at this point, the previous
analysis applies unchanged and the approach to
the ®xed point follows relation (8). An approach
to Fl from below is impossible because r < rl

corresponds to a state on the lower branch. Thus
this is a `one-sided stability'. There is no apriori
reason, however, why (dv/dr)F should be ®nite. If
the slope diverges the dynamics of the crack tip
are sensitive to the speci®c rate of the divergence.
For example, consider the following form for v(r)
near rl.

v � vl � v0

r
rl
ÿ 1

� �n

;Fig. 2. The stress history in the steady and periodically oscil-

latory states.

R. Blumenfeld / Theoretical and Applied Fracture Mechanics 30 (1998) 209±223 217



u � vl ÿ c
v0

� �rÿ rl�n; �14�

where 0 < g < 1 is a dimensionless number and v0

is a prefactor with dimensions of velocity. This
relation can be regarded as an approximation to a
frequently occurring functional form in fracture

v � vl � v0 1ÿ eÿ�r=rlÿ1�gÿ �
; r P rl: �15�

The behaviour near the ®xed point can be calcu-
lated from Eq. (5) and yields

rÿ rc � �so ÿ t�1=�1ÿg� �16�
and

u � �so ÿ t�g=�1ÿg�
; �17�

where s0 > t is a characteristic time whose value is
determined by the properties of the material under
consideration. This solution describes again a
convergence of the velocity of propagation to
c� vl but, unlike the former case, the convergence
now is at a power law rate rather than exponen-
tially. In this case, Fl can be described as margin-
ally stable. This marginal state is extremely
sensitive to noise because when the crack propa-
gation is close to the ®xed point �rl; vl� very small
¯uctuations can knock the system over the edge
down to the lower branch. Therefore, this scenar-
io, although theoretically interesting, is not very
likely to be observed in real situations.

To summarize this section, the dynamics of the
tip in the noise-free regime is characterized either
by a steady-state propagation at the limiting ve-
locity c, or by a periodically oscillating propaga-
tion rate with a period T, which has been found
explicitly. It is emphasized that there is only one
material dependent parameter, k, that controls
which of these modes will come into play. The
marginal propagation mode, although existing in
principle according to the equation of motion,
should be practically impossible to detect due to
the inevitable noise that always exists.

4. Kinetics of Mode III propagation

The above treatment is extended to Mode III
propagation [17]. As it turns out, there is no
quantitative di�erence in adapting the calculations

to this mode. Only the explicit form of the solution
for r(t) changes between the two modes. Again,
start from the spatial dependence of the stress
®eld, which, for mode III propagation is

ryzjy�0 � K�=

����������������������������������
2p xÿ

Z
c dt

� �s
: �18�

Here the tip motion is assumed, for brevity, to
occur along the x-axis as de®ned by the symmetry
of the mode-III boundary conditions, and

R
c dt is

the position of the stress singularity. Since the
propagation is supersonic the tip is ahead of the
stress singularity and the above expression can
again be reinterpreted as describing the tip stress in
terms of its distance from the ®eld singularity,

rtip � r � K����������������������������������
2p l�t� ÿ R c dt
� �q : �19�

The term under the radical is the location of the tip
in the frame of the moving stress ®eld singularity,
which propagates at speed c. The value of c may,
or may not, be constant, an issue that is discussed
in a di�erent report [13]. Di�erentiating Eq. (18)
with respect to time we now have

_r � ÿ K�

2
������
2p
p

� �
vÿ c

2 l�t� ÿ R c dt
� �3=2

� ÿ pr3�vÿ c�
K�2

�20�
Inverting this relation, we obtain the exact solu-
tion for t(r):

t ÿ to � ÿ K�2

p

� � Zr�t�
r�t�t0�

ds
s3�v�s� ÿ c� : �21�

Presuming that the constitutive local velocity-
stress relation remains the same as for mode I, the
above analysis carries over to this case with es-
sentially similar conclusions:

(1) For k > 1, Eq. (21) has a ®xed point on the
upper branch at v(rc)� c. A linear stability anal-
ysis around the ®xed point yields that it is stable
with

dr � eÿct ; c � pr3
c�ov=or�rc

K�2
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Therefore, when the system is on the upper
branch, it ¯ows to the ®xed point both from v > c
and v < c. As in mode I, the stable ®xed point
corresponds to the crack propagating at a steady-
state velocity c.

(2). For k < 1, the propagation consists of a
series of relaxation cycles. The period of oscillation
can be calculated explicitly again and turns out to
be:

T � K�2

cp

Zrh

rl

1

uub

ÿ 1

ulb

� �
ds
s3
; �22�

where uub and ulb are the upper and lower branch
reduced velocities, as before.

5. Dynamics in the presence of noise

Now proceed to address noise and its e�ects on
the above results. First, identify the relevant
source of noise in this system. As mentioned in the
introduction, even in the absence of external (e.g.,
thermal) ¯uctuations, the medium vibrates
strongly on atomic wavelengths. The reason is that
the crack grows through a series of bond breaking
events that give rise to violent vibrational excita-
tions. These excitations are nonlinear due to two
e�ects: (1) The nonlinearity of the interatomic
potentials (recall that just ahead of the tip the at-
oms are strained to well beyond the linear Hook-
ian approximation). (2) Due to the disordered
structure on the atomic scale in the cohesive zone.
The nonlinearity manifests in localization and
coupling between di�erent modes. Moreover,
whereas linear excitations (phonons) propagate
smoothly from the excited tip, the lattice nonlin-
earity leads to nontrivial `leaking' of energy from
that zone. This, in turn, gives rise to an energy
build-up in front of the propagating crack tip, as
has indeed been observed in simulations [18].
However, having said all that, these e�ects are
expected to dominate only on length-scales that
are at most a few nm and therefore cannot persist
to higher length-scales mostly due to localization
e�ects. It follows that these vibrations are irrele-
vant on the length-scales discussed here and noise

in the mesoscale comes mainly from the spatial
and statistical size distribution of microcracks.
Remember that by microcracks we refer to inho-
mogeneities that occur in the PZ and which are
much smaller than the main crack. The material
inhomogeneities form and grow in response to the
enhanced strain in front of the propagating crack
and therefore their size and spatial distributions
not only play a signi®cant role in the dynamic
propagation but are also determined self-consis-
tently by the very same dynamics. Here we take for
simplicity these distributions as given and proceed
to consider the implications within the current
theory. To keep the model simple, it is assumed in
the following that v(r) remains unchanged on the
time and length scales that are relevant to mea-
surements, and only the local stress at the tip is
a�ected.

What happens physically is that the main crack
propagates until it encounters a microcrack,
whereupon the tip stress and position change dis-
continuously as follows: Suppose the main crack
joined the microcrack at a point B along the
boundary of the latter. After the association event
propagation will resume from a point along the
boundary of the microcrack which is di�erent than
B. So the location of the tip jumps discontinuously
from one point along the microcrack boundary to
another. At the same time, the tip stress drops
discontinuously because the stress at the new point
of propagation is inevitably lower than the stress
at the original point.

Distinction will be made between two regimes:
(1) When the microcrack sizes are su�ciently small
so that the positional changes are undetectable on
measurable scales but stress ¯uctuations can be
observed. In this regime only stress drop events
need be considered and the small jumps in the tip's
position can be ignored. (2) When there are su�-
ciently big microcracks so that even the positional
jumps can be detected experimentally. In the latter
regime, one needs to resort to a detailed statistical
analysis, which is a straightforward extension of
the analysis to be presented below. No attempt will
be made in this presentation but rather defer it to a
later report. As it turns out, even the ®rst regime
reveals a rich behaviour, as is shown in the fol-
lowing.
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6. E�ects of ¯uctuations in the steady state

When k < 1, ¯uctuations only smear the peri-
odicity with the extent of the smear depending on
the size and frequency distributions of the ¯uctu-
ations. An explicit quantitative analysis of this
regime is left for another report. Here focus is
made only on a few cases when k > 1, which yield
a somewhat richer behaviour. The dynamics for
k > 1 are determined by several issues: (1). The
noise amplitude, A; (2) The value of D0 � rc ÿ rl,
namely, the di�erence in stresses between the ®xed
and arrest points; (3) The frequency of occurrence
of the ¯uctuations, x (which may well be distrib-
uted over a wide range of frequencies). A central
quantity in all that follows is the probability den-
sity of ¯uctuations in the tip stress amplitude,
PA�dr � rc ÿ r� and it is therefore convenient to
classify the behaviour by the amplitude and fre-
quency of occurrence of the ¯uctuations. This
classi®cation spans an interesting state diagram in
the A±x plane.

6.1. x « c and A « D0

Consider ®rst a very low occurrence frequency
of ¯uctuations in r, x « c, where c is de®ned in
Eq. (8), and assume that there are no ¯uctuations
whose amplitude is greater than D0, namely,

Prob�A > D0� �
Z1
D0

PA�x� dx � 0

The more dilute the spatial distribution of
microcracks, the longer the delay times between
successive ¯uctuations and the smaller is the fre-
quency x. The smaller the sizes of the micro-
cracks, the smaller are the ¯uctuation amplitudes
and therefore the smaller are the values of A.
Consider now what happens when a ¯uctuation
has just kicked the system from the ®xed point to
a new state of stress and velocity. The new state
is located on the upper branch somewhere be-
tween rc and rl. From the new point the system
moves back to the ®xed point by accelerating
according to Eq. (21), whereupon it settles back
into the steady state and awaits a new ¯uctuation.

The probability density of the time intervals that
it takes the system to settle back into the ®xed
point, s, that can be calculated directly from PA

and Eq. (21):

P�s� � PA�dr�jd _r�s�j

� c
a

PA�dr� uub�dr� �rc ÿ dr�2 ÿ 1
h i3=2

���� ����; �23�

where dr is a function of s which is obtained from
Eq. (21). Thus, this case displays small ¯uctua-
tions around the steady-state propagation rate,
whose probability density is given by Eq. (23). At
this point we can close a circle and provide a self-
consistent criterion for what one can consider low
occurrence frequency of stress ¯uctuations: For
the above calculation to remain consistent, the
distribution of the time intervals between two
successive ¯uctuations hn, need to satisfy the rela-
tion P(s > hn) « 1.

6.2. x > c and A « D0

We now consider occurrence frequencies of tip
stress ¯uctuations moderately higher than c, whose
amplitudes are still below D0. Physically, this
means that the microcracks are still small but that
they are more densely distributed in the PZ. Now,
once the system has been kicked away from the
®xed point, the tip is typically not allowed su�-
cient time to return to this state before a new
¯uctuation appears that further reduces the stress.
To illustrate the statistical calculation, consider the
following example of kinetics: The system has just
jumped to the upper branch at rh and starts sliding
down according to the equation of motion (5).
After a period of time, h1, of smooth drop, a
¯uctuation of size A1 occurs when the tip stress is
at r(h1). This causes the stress to drop discontin-
uously to r(h1) ) A1. From this new point, the
system slides again smoothly according to the
equation of motion until another ¯uctuation oc-
curs. Consider the statistics of such a series of
events. Of particular interest is the time, Tu, that
the system spends on the upper branch before it
reaches rl. To compute this time, regard the pro-
cess as a time series of ¯uctuations of sizes An, each
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following a quiescent period of hn. The total time
spent on the upper branch is

Tub � a
c

XN

n�1

Zrnÿ1ÿAnÿ1

rn

dx

uub�x2 ÿ 1�3=2
; �24�

where rn�0 � rh, An�0 � 0, rn is the stress that the
system reached starting from rnÿ1 ÿ Anÿ1 following
the equation of motion for a period of time hn, and
N is the total number of ¯uctuations needed,
starting from rh, to drop all the way down to rl. In
Eq. (24), there is a di�erence in the kinetics above
and below rc: For r > rc the system drops be-
tween successive ¯uctuations, thus adding to the
downslide of the system. For r < rc the kinetics
act to increase the local tip stress, opposing the
downslide. This di�erence is important in that it
gives rise to a continuous spectrum of noise-driven
steady states which can occur only for r < rc, as
shown below. Once the system has dropped to the
lower branch, the tip stress increases without in-
terruption from rl to rh, which takes

Tlb � ÿ a
c

Zrh

rl

dx

ulb�x2 ÿ 1�3=2
: �25�

Thus, the period of an entire cycle is T�Tlb + Tub,
whose distribution can be computed from the
above expressions in a straightforward manner.
The observed behaviour depends largely on the
statistics of the ratio Tub/Tlb. If this ratio is sharply
distributed then the behaviour is quasi-periodic,
while if it is widely distributed then the dynamics is
either intermittent or chaotic. Although a detailed
statistical analysis will not be carried out here, it
can be seen from relation (24) that the behaviour
will be sensitive to both the distributions of hn and
An. An analysis, assuming the standard Weibull
statistics for the distribution of the microcracks is
currently under way where we study the implica-
tions on the propagation dynamics.

For a very high density of microcracks in the
PZ, many ¯uctuations in quick succession can
push the system all the way down to rl and over
the edge to the lower branch. The crack will be
observed then to propagate haltingly until it
drops to the lower branch and stops. There the

crack waits for the stress to build up again until a
new initiation occurs. Thus, very high occurrence
frequencies of small ¯uctuations can lead to
chaotic, intermittent or even seemingly periodic
behaviour, depending directly on the statistics of
the noise.

6.3. x � c and A � pD0; 0 < p < 1

So far, it is found that small ¯uctuations at low
occurrence frequencies (namely, large values of h)
a�ect the steady state very little, while high fre-
quencies can lead to various complicated dynamic
behaviours that depend on the distributions of hn

and An. Similarly, intermediate and small values of
h can be analysed. These results are not presented
here. Rather, one particular regime will be men-
tioned which gives rise to a new phenomenon: A
continuum of solutions corresponding to noise
driven steady-states.

Consider a system whose material parameter is
k� k0 > 1. Suppose that at time t0 the system is at
some point r0 on the upper branch such that
rl < r0 < rc. Now let a ¯uctuation of size A0 jolt
the system down to r0 ÿ A0 > rl. According to the
equation of motion, the stress will increase until a
new ¯uctuation arrives or until the stable ®xed
point is reached. If the occurrence frequency of
¯uctuations is not too low a new ¯uctuation will
come along after a time h1 and before the system
converges to the ®xed point. This ¯uctuation re-
duces the stress of the tip to a new stress, rl ÿ A1,
and the system starts to slide up the upper branch
again towards the ®xed point. On the way up,
however, yet another ¯uctuation occurs, the tip
stress drops again and so on. If the values of hn are
typically similar to the time that it takes the tip
stress to build up to the same value that it started
from (x � c). The tip stress can only build up to
approximately the initial stress before another
¯uctuation comes along and knocks it down again.
Thus the stress will be knocked about back and
forth below rc around some average velocity
kmeasured < k0. Measurement of the limiting speed
will give in this case a value that lies below the real
SWS in the PZ.

As mentioned, the analysis for k < 1 can be
carried out along very similar lines. It reveals that
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in this regime the behaviour either ¯uctuates about
the periodic propagation mode, or it becomes in-
termittent. The full state siagram is shown in
Figs. 3 and 4.

Note that the separation in the A±x parameter
space cannot be sharp; Large ¯uctuations with
intermediate occurrence frequencies can lead to
behaviours that range from completely chaotic,
through intermittent to periodic, all depending
on the interplay between the distributions of A
and h.

It should be stressed that small ¯uctuations al-
ways occur and therefore no proper steady-state
propagation can exist for D0 below the back-
ground noise level. Thus, for narrow distributions
of A and x (i.e., distributions whose tails decay
exponentially) the system is expected to be mostly
in a periodic-like propagation regime, with the
statistics of the period time being computable from
the distribution of the ¯uctuations, as outlined
above.
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