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Current Distributions in a Two-Dimensional 
Random-Resistor Network 
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The current and logarithm-of-the-current distributions ~(lil) and n([ln ]il l) on 
bond diluted two-dimensional random-resistor networks at the percolation 
threshold are studied by a modified transfer matrix method. The kth moment 
(-9~<k~<8) of n(lln 1i11) i.e., ( l ln ]il ik), is found to scale with the linear size 
L as (In L) alk). The exponents fl(k) are not inconsistent with the recent theoreti- 
cal prediction fl(k) = k, with deviations which may be attributed to severe finite- 
size effects. For small currents, ln n ( y ) ~ - T Y ,  yielding information on the 
threshold below which the multifractality of ~([il) breaks down. Our numerical 
results for the moments of the currents are consistent with other available 
results. 
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1. I N T R O D U C T I O N  

Multifractal distributions have been the center of much recent research. A 
specific example on which many of the general questions have been studied 
in detail concerns the distribution of currents on percolating resistor 
networks. (1-7) Consider a two-dimensional square lattice network of size 
L x L, where each bond has an Ohmic conductance a = 1 with probability 
p, or a = 0 with probabili ty ( 1 - p ) .  In what follows we consider only the 
percolation threshold Pc = 1/2 when the percolating spanning cluster which 
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connects two opposite edges of the network is a fractal. We next pass a unit 
current between two parallel busbars on these opposite edges. Denoting the 
absolute value of the current in the bond b of the network by ib, one 
considers the distribution h(ib) of these currents and its unnormalized 
moments 

2~/[q= Z [ibl2q = I dibft(ib) libl2q (1.1) 
b 

For q < 0, the sum contains only terms with ib r 0. 
Multifractal behavior implies that asymptotically, for large L, one has 

the power law behavior 

J~fq ~ AqL ~(q) (1.2) 

[~(q) is sometimes (1) denoted by -Xq].  
If (instead of a unit current) one applies a unit voltage between the 

busbars, then each current i b is replaced by i~ = ib/R, where R = M~ is the 
net resistance between the busbars. As a result, the unnormalized moments 
of the currents behave asymptotically as 

with 

M q ~ A'qL ~~ (1.3) 

~ ( q )  = ~(q) - 2q~(1) (1.4) 

The distribution of ib (or of i;) is considered multifractal when ~(q) 
and Aq [or ~,(q) and A'q] become L-independent for large L, and when 
~(q) is not linear in q. Recent work showed (3' 4) that there exists a negative 
threshold qc such that "conventional" multifractality (as defined above) is 
broken for q < qc < 0. In this regime the moments are dominated by very 
small currents, which decay to zero faster than a power law in L. This 
results in the divergence of In l~/Iq/ln L (and In Mq/ln L) as L ~ or. 

Hierarchical structures imitate many geometrical features of the per- 
colating clusters at Pc. Indeed, the m o m e n t s  Mq and Mq on such structures 
obey Eqs. (1.2) and (1.3), respectively for all q (thus missing the anomalous 
behavior at negative q). The multiplicative hierarchy of the currents on 
these structures implies that the distribution of Yb = Lln ib l, n(Yb), is much 
simpler than that of i b. In fact, n(yb) turns out to be unifractal, (2'4) and it 
depends on Yb only through the scaled combination yb/ln L. This leads to 
a simple behavior of the normalized moments 

#k = ~ Y~/NBB (1.5) 
b 



Random- Resistor Network 115 

where NBB = 37/0 is the number of backbone bonds, which have i b ~ 0. On 
hierarchical lattices, #k scales asymptotically as (ln L)k. (4) 

Since hierarchical lattices miss the singular behavior of 37/q for q < qc, 
it is not clear a priori if the above results for n(yb) and #k survive for real 
percolating resistor networks. This led to detailed recent studies of n(yb) 
and #~ on the latter structures. (4-6) In the absence of a theory, #k was first 
fitted to the generalized form (s) 

#k ~ Bk(ln L)/~(k) (1.6) 

For  three-dimensional percolating networks, /~(k) was fitted (s) to a 
straight line,/~(k) = ck, and c was found to be between 1 and 1.15. Another 
interesting result was that n(yb) turned out to be very close to linear in Yb 
for large Yb (small ib). The present paper reports on similar analyses of 
two-dimensional percolating resistor networks, using a modified transfer 
matrix method. (7~ It should be emphasized that this transfer matrix method 
is essentially exact (apart from small roundoff errors). This is crucial for 
finding the correct small currents. For these currents, we expect to do much 
better than the competing methods (see, e.g., ref. 8). 

In parallel to our numerical work, Aharony et al. (ABH) (4) developed 
a theory for n(yb) and #k. They found that for large L, 

# k ~ ( % l n L ) k { l + k [ C l + � 8 9  1+ OF(ln L ) - 2 ] }  (1.7) 

Therefore, they expect that asymptotically/~(k) = k. However, the finite-size 
corrections are of relative order k ( k -  1 )/ln L, which is not at all small for 
realistic values of L. These predictions found some support in recent series 
expansion results. (6) 

After giving a brief description of our numerical method in Section 2, 
we present our results for mq, Mq, n(yb), and #k in Section 3. Section 4 
then contains a critical discussion of these results, and our final conclu- 
sions. 

2. T H E  N U M E R I C A L  M E T H O D  

As mentioned, we considered a percolating square lattice resistor 
network of size L x L with either unit-current or unit-voltage boundary 
conditions. Data were collected for M =  5000, 5000, 5000, 3275, 1433, 735, 
416, 509, 325, and 329 samples at L = 6, 10, 20, 30, 40, 50, 60, 70, 80, and 
90, respectively. 

The currents in all the bonds of the network were obtained by a 
modified transfer matrix method, (7~ which uses two independently derived 
admittance matrices that characterize the left- and right-hand sides of the 
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network. In this method we calculated all the bond currents in a given 
cross section of the network, by solving a set of linear equations obtained 
by equating the currents and voltages from the two sides of the network. 
The bond currents obtained in this way are extremely accurate, as required 
for the logarithms-of-the-currents distribution, without having to eliminate 
the dangling ends. (We chose not to eliminate these bonds, because we also 
wanted to calculate the distribution of the voltage drops over insulating 
bonds; see the end of Section 3. In a few cases we did "burn" the dangling 
ends; this neither saved on the total computer time nor increased the 
accuracy. In fact, the only errors in this method, which does not rely on 
iterations and is essentially exact, are due to roundoff. 

In the analysis of the logarithms-of-the-currents distribution, it is 
important to avoid even those roundoff errors, since the smallest currents 
i give the largest values of Iln(i)l. For  large values of L ( L > 4 0 )  there 
appear some very small currents that cannot be clearly distinguished from 
spurious values that appear, as a result of roundoff errors, in conducting 
bonds where the current should vanish (e.g., in dangling clusters or on 
exactly balanced elements, such as the Wheatstone bridge). As we explain 
below, we discarded the main contribution of these spurious currents by 
introducing a lower cutoff. We found that the moments which were studied 
did not depend on the exact position of this cutoff. Therefore, the spurious 
currents are irrelevant for these moments. 

The data on the distribution of the logarithms-of-the-currents were 
collected from M sample systems in N = 1000 bins equally spaced in In i 
between ln(imin) and In(ira,x). The values of imin and /max were chosen from 
the analysis of preliminary results, so that all the calculated currents fell 
between these values. Initially we chose imin--= 10 12, /max = 1. 

As a preliminary check, we accumulated the data for Iln ib] k= yk on 
all the bonds with ib ~ 1 within each particular sample and then averaged 
the results for #k over the M samples. This gave us some estimates for the 
statistical error bars. We also accumulated the data for y~ in all the 
samples and then normalized the result by the total number of bonds. The 
results of these two calculations were close to each other, indicating a large 
degree of self-averaging. 

Having plotted the data for the full distribution n(y), we noted that it 
decreased monotonically for large y (small i), reached a minimum, and 
then increased (see the large-y part of Fig. 1). We associated this increase 
with spurious currents, resulting from roundoff errors. We thus redefined 
imin as the current that corresponds to this minimum, and discarded 
all smaller currents as spurious. (5'9) Finally, we used the remaining dis- 
tributions flU) and n(y) to obtain the moments of i and of y = Iln il, as 
presented below. 
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3. R E S U L T S  

Figure 1 shows n(y) for L = 90, for unit-voltage boundary conditions, 
including spurious currents, whose contributions dominate the distribution 
for y > 20. That part of the distribution was discarded in the calculation of 
the moments #k. 

The most pronounced feature of Fig. 1 is the linear dependence of 
In n(y) on y =  [ln il over the range 1 0 - 8 <  i <  10 -3. Fitting this part of the 
curve to straight lines for several sizes and extrapolating their slopes to 
L -* oo gave 

in n(lln i1)~ - 7  fln if (3.1) 

with ?, = 0.5 + 0.1. As discussed by ABH, (41 this linear dependence indicates 
a breakdown of multifracta!ity in the moments F/q for q ~< qc. They also 
argued that the slope 7 yields an upper bound on qc, 

qc~ - �89 --- - 0 . 25  (3.2) 

For q < q , ,  the moment 32/q is dominated by the lower bound in the 
integral (1.1), and it behaves as l imin J 2q + 

We next turn to the moments of the logarithms of the current, # , .  
Applying a least-squares fit to the straight line 

In #k = In B k +/~(k) ln(ln L) (3.3) 
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Fig.  1. L o g a r i t h m - o f - t h e - c u r r e n t  d i s t r i b u t i o n  n(y) ve r sus  y = Iln i] for L = 90. 
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Fig. 2. Plot of fl/k versus k when a unit voltage is applied between the busbars. 

we deduced values for fl(k) and B k, as plotted in Figs. 2 and 3. The error 
bars in these figures are only statistical. Even with these small error bars, 
the values of fl(k)/k are quite close to unity (note the large scale of Fig. 2). 
In fact, the observed slopes of the curves of In/~k versus ln(ln L) increased 
slightly at large L for k > 1. As we discuss below, this increase [which 

L 

r . n  '-~ 

2 

0 

-1 
-10 10 

/ 

J 

k 

Fig. 3. Plot of ln(Bk) versus k when a unit voltage is applied between the busbars. The line 
drawn through the points can be represented by k 138 for k > 0. A fit with a second-order 
polynomial is shown for negative values of k. 
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Table I. Exponents and Amplitudes of the Moments of the 
Current Distributions 

119 

q In A S In Aq ~v(q) ~(q) 

1 0.114 -+ 0.009 0.04 • 0.02 - 0 . 9 8 0  __-t- 0.003 0.977 -+ 0.007 

2 0.12 __+ 0.02 0.03 -+ 0.04 - 3 . 1 2 1  -+ 0.006 0.81 -+ 0.01 

3 0.26 -+ 0.04 0.02 _+ 0.05 - 5.14 _+ 0.01 0.77 _+ 0.01 

4 0.62 i 0.07 0.01 _+ 0.05 - 7.12 • 0.01 0.75 _+ 0.01 

causes an increase in the measured average slope /3(k)] may be due to a 
systematic error concerning spurious currents. The true /?(k) values may 
thus be smaller. 

A power law fit to In B~ of Eq. (1.6) for k > O  yields in B k ~ k  14 (see 
Fig. 3). The data for k < 0 were fitted by a second-order polynomial. If we 
wish to fit all the points, with k both positive and negative, by a single 
analytic expression, we need a fourth-order polynomial. However, the data 
in Fig. 3 for k > 0 may also be fitted by a linear curve, as predicted from 
Eq. (1.7), i.e., B k -C~o ~, with corrections which increase with k. 

We next turn to moments of the current, ~rq. Least-square fits of 
straight lines for In 37/q and In ~7/q versus In L [Eqs. (1.2) and (1.3)] yielded 
the results listed in Table I. We note that Aq s e e m s  to depend very weakly 
on q, while A'q shows a stronger dependence on q. The measured values of 
~ ( q )  and ~(q) satisfy Eq. (1.4). However, if this equation is used to 
evaluate ~ ( q )  from ~(q), then one encounters larger errors compared to 
the direct measurement of ~(q) .  These errors arise from the term 2q~(1). 

In Table II we compare our results for the exponents ~(q) with results 
from other simulations and also from series expansions. It is clear from this 
table that our results not only are consistent with previous calculations, 

Table II. Comparison of Our Results for ~Pv(q) and ~ (q )  wi th  Results from 
Other Simulations and from Series Expansions 

Source  ~ ( 2 )  ~ (1 )  ~ (2 )  ~ (3 )  ~ (4 )  

O u r  resul ts  - 3 . 1 2 1 _ + 0 . 0 0 6  0.977___0.007 0 . 8 1 + 0 . 0 1  0.77_+0.01 0.75_+0.01 

Series {3) - -  - -  0.825 i 0.06 0.78 -- 0.06 0.765 + 0.06 

S imu la t i on  (1~ - 3 . 0 5 7  +_0.03 0.973 +__0.05 - -  - -  - -  

S i m u l a t i o n  (m - -  0 .982-+ 0.004 0 .818-+ 0.009 0.773_-+0.01 - -  
S imu la t i on  (z) - 3.12 -+ 0.02 . . . .  

S imu la t i on  (12} - -  0.978 • 0.01 0.81 + 0.02 0.74 -+ 0.02 0.73 -+ 0.02 

S i m u l a t i o n  {131 - -  0 .9745 _+ 0.0015 - -  - -  - -  

S imu la t i on  (14) - -  1 .0035_+0.0096 0 .857_+0.013 0 . 8 1 6 - + 0 . 0 1 4  0 .803 -+0 .015  
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but are also very precise. We take this to be an indication of the reliability 
and precision of our simulations and of our other results as well. 

We also evaluated the voltages v across insulating bonds that separate 
pairs of adjacent backbone sites. We then calculated moments of the dis- 
tribution of In v, ~(lln vl ). These moments, as well as the distribution itself, 
are more susceptible to errors from the spurious currents than are the 
moments of the distribution n(y). Assuming that we can still apply an 
equation of the form (1.6) to describe the new moments, we obtain 
fl(k)/k "~ 1.13 _+ 0.06. This value is close to the effective one obtained from 
n(y) (without taking into account finite-size corrections), which may 
suggest that the two distributions have similar scaling properties. 

4. D I S C U S S I O N  A N D  C O N C L U S I O N S  

As mentioned above, our results may suffer from two main problems. 
The first one concerns the spurious small currents due to roundoff errors. 
Even though we eliminate most of these by shifting imin from 10-12 to the 
minimum in n(y) (see Fig. 1), some spurious currents may still remain. 
These may cause a misleading increase in Pk for large L, which grows 
larger with increasing k > 1. This may be one source for the observed 
increase in fl(k)/k in this range (see Fig. 2). Since results are not sensitive 
to the exact choice of the cutoff, we feel that this problem is not severe. 

A second major problem concerns finite-size effects. It is interesting to 
note that Eq. (1.7) predicts that the effective slope fleff(k) should behave as 

t? In/~ k {[ ] } k 1 -  CI+-~DI(k-1)  ( lnL)  l + O [ ( l n L )  2] fl~fd k ) ~ l n l n L  

(4.1) 

Therefore, to order (ln L) 1 fleff(k)/k should be linear in k. Since Fig. 2 
exhibits a nonmonotonic dependence of flcrf(k)/k, it is clear that one needs 
higher order terms, e.g., of order (4) k ( k - 1 ) ( k - 2 ) ( l n  L) 2, in order to fit 
the data. This is a direct consequence of the fact that for our data, kiln L 
became of order unity for Ik] ~ 4. Since the data were forced into the form 
of Eq. (3.3) with the nonmonotonic effective exponent fl~rf(k), this resulted 
in a similar nonmonotonic effective intercept In Bk, as seen from Fig. 3. 
Larger samples are needed for a systematic comparison with the correc- 
tions in Eq. (1.7). However, the closeness of our fl(k)/k to unity is 
encouraging. 

A third problem, not mentioned yet in this paper, concerns the finite 
resolution in binning the data in Fig. 1. As shown recently, (15) the 
apparently linear part of the curve may result from or be affected by the 
resolution. Future work should study the related effects here. 
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In conclusion,  very precise values of  ~(q)  were ob ta ined  and  our  
numer ica l  results for /~(k)  seem to be consis tent  with the theoret ica l  predic-  
t ions of ABH.  However ,  it is clear  that  bet ter  statistics,  larger  values of L, 
more  sys temat ic  inclusion of the finite-size correct ions,  bet ter  ways to 
e l iminate  roundof f  errors,  and  a sys temat ic  s tudy of f ini te-resolut ion effects 
are necessary in o rder  to be more  conclusive. 
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