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Abstract 

The dynamics of the small protein crambin is studied in the crystal environment by means of a 5.1 nanoseconds molecular 
dynamics (MD) simulation. The resulting trajectory is analyzed in terms of a small set of nonlinear dynamical modes that 
best describe the molecule's fluctuations. These modes are nonlinear in the sense that they describe a trajectory exhibiting 
multiple transitions among local minima at various timescales. Nonlinear modes are responsible for most of the protein atomic 
fluctuations. An ultrametric hierarchy of sampled local minima describes the protein trajectory when structures are classified 
in terms of their interconfigurational mean squared distance. Transitions among minima involve small changes in the relative 
atomic positions of many atoms in the protein. The character of the MD trajectory fits within the framework of rugged 
energy landscape dynamics. This MD simulation clarifies the unique statistical features of the barriers between minima in the 
energy-like configurational landscape. Longer timescale dynamics seem to sample transitions between minima separated by 
relatively higher barriers. The MD trajectory of the system in configurational space can be described in terms of diffusion of a 
particle in real space with a waiting time distribution due to partial trapping in shallow minima. A description of the dynamics 
in terms of an open Newtonian system (the protein) coupled to a stochastic system (the solvent and fast quasiharmonic modes 
of the protein) reveals that the system loses memory of its configurational space within a few picoseconds. The diffusion of 
the protein in configurational space is anomalous in the sense that the mean square displacement increases sublinearly with 
time, i.e., as a power law with an exponent that is smaller than unity. 

Keywords: Protein dynamics; Nonlinear dynamics; Ultrametric hierarchy; Molecular dynamics; Anomalous diffusion; 
Ltvy flights 

1. Introduct ion 

The dynamics of  proteins are closely related to their biological function. Proteins exhibit motions on a very wide 

range of  timescales from picoseconds (ps) [1-3] to seconds [4] (as studied by hydrogen exchange experiments). 

Experimental studies on myoglobin suggest the existence of  a hierarchy of  motions occurring at various timescales 
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and resulting from an ensemble of nearly degenerate states separated by a distribution of enthalpic energy barriers 
[5-8]. On longer timescales (milliseconds to seconds) many proteins seem to follow an energy-like funnel to the 
folded state [9,10]. Fast folding (submillisecond regime) proteins have also been observed [ 11-14]. Studies of the 
protein folding kinetics and stability analyses based on 3D lattice and off-lattice models of polymers with binary 
interactions (i.e., polar and hydrophobic) that mimic proteins [ 15-21 ] also agree with this picture. Onuchic, Wolynes 
and collaborators [ 16,22-24] proposed an energy landscape theory of folding with the idea that folding kinetics is 
best regarded as a progressive organization of an ensemble of partially folded structures, the folding funnel,  rather 
than a serial progression between intermediates. Recent experiments [9,25-27] show that varying one crucial amino 
acid can eliminate a late stage folding bottleneck and allow fast folding to occur, in perfect agreement with the 

folding-funnel theory. 
Krumhansl [28] related the dynamics of proteins and DNA to that of low-dimensional materials showing struc- 

tural phase transitions. In support of these observations Garcfa [29] showed that the fluctuations of a protein in 
solution are best described in terms of large-amplitude nonlinear motions. Molecular dynamics (MD) simulations, 
ligand recombination [30], pressure relaxation [7,8], time resolved X-ray crystallography [31 ] and vibrational echo 
studies [1-3] give information about the lower end of the funnel or energy landscape that is sampled in the folded 
state. Computational evidence (MD and Monte Carlo (MC) simulations) for the existence of these substates have 

been previously discussed in the literature [29,32-34]. 
Here we will present evidence showing the presence of multi-basin, nonlinear motion in proteins in the picoseconds 

(ps) and nanoseconds (ns) timescales. A method for extracting modes that best represent the fluctuations in the system 
will be described. This method consists of a generalized least-square fitting of sampled configurations in Cartesian 
space to one-, two-, or three-dimensional subspaces that best describe the atomic fluctuations [29]. We will show 
that the MD trajectory of the protein is clustered around few local minima (basins of attraction), and that many 
transitions among local minima occur within the 5 ns trajectory. These transitions involve small changes in the 
relative atomic positions of many atoms in the protein. The trajectory of the protein in configurational space can be 
described within a framework of a particle diffusing in real space and getting partially trapped in shallow minima. 
A description of the dynamics in terms of an open Newtonian system (the protein) coupled to a stochastic system 
(the solvent and fast quasiharmonic modes of the protein) reveals that the system loses memory of its configuration 
within a few ps. The diffusion of the protein state in configurational space is anomalous in the sense that the mean 
square displacement, (R2), is not proportional to time, as in traditional Brownian diffusion, but is substantially 
suppressed with (R 2) ~ t 2H°, where 2HD < 1. 

2. Description of the system 

We study the dynamics of a small hydrophobic protein, crambin, in its crystal environment during a 5.1 ns, 
300 K MD simulation. Crambin is a 46 amino acid protein that contains most of the structural elements that are 
characteristic of larger proteins. Fig. 1 shows a schematic representation [35] of the three-dimensional structure of 
crambin. Starting from the N-terminus and moving along the protein chain we find a fl-strand (Sl, amino acids 1-4), 
a loop (amino acids 5-6), a helix (H1, amino acids 7-19), a loop (amino acids 20-22), another helix (//2, amino 
acids 23-30), another fl-strand that makes hydrogen bonds with the first fl strand to form a fl sheet ($2, amino acids 
32-35), and a turn (amino acids 41--44). Three disulfide bonds are formed by Cys(3)-Cys(40), Cys(4)-Cys(32), and 
Cys(16)-Cys(26). Because of these disulfide bonds the connectivity of the amino acid chain cannot be described 
by a quasi-one-dimensional chain. 

The initial conformation of the protein was obtained from the crystallographic coordinates reported by 
Hendrickson and Teeter [36]. In the crystal, crambin adopts a P21 space group symmetry, contains two molecules 
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CRAMBIN 

Fig. 1. Ribbon representation of the secondary and tertiary structure of crambin. The letters N and C label the amino and carboxy termini, 
respectively. The labels H1 and H2 show two helical regions. The labes S1 and $2 show the two/3 structures. This figure was generated 
using the program MOLSCRIPT [35]. 

per unit cell, and the unit cell dimensions are a = 40.96, b = 18.65, c = 22.52 A, with/3 = 90.77 °. We simulated 

the dynamics of  two molecules in the unit cell without imposing the P21 symmetry, except on the initial config- 

uration. We used periodic boundary conditions to simulate an infinite crystal where all the unit cells are perfectly 

correlated. We added 182 water molecules to the system according to crystal density estimates by Teeter [37] and 

MC simulations by Jorgensen et al. [38]. Interatomic energy interactions were modeled with the all-atom force 

field of  Cornell et al. [39]. This force field approximates intra- and intermolecular interactions through classical 

potentials. For water we used the TIP3P model [40]. The simulated system thus contains 1830 atoms in the unit cell 

(182 water molecules and two crambin molecules with 642 atoms each). We calculated long-ranged electrostatic 

energies using the particle-mesh-Ewald-summation (PME) method [41], implemented in Amber [42]. 64 x 32 x 

32 grid points were used for the PME. A third-order spline interpolation was used and the real space tolerance 

factor was set to 1.1 x 10 -6. Configurational averages are calculated from configurations saved at a rate of  lOper 

ps during the first 1 ns of  the simulation and 4 perps during the last 4 ns. We simulated the system for 5.1 ns at 

constant temperature [43]. The first lOOps of  the simulation are not included in any averaging to avoid artifact 

transitory effects. Descriptions of the dynamics of  crambin in aqueous (non-crystalline) solution have been reported 

before [29,44,45]. 

3. Results and discussion 

3.1. Time evolution of  the distance between configurations 

The inter-dependence of  local structural-variables describing collective, delocalized excitations is not trivial and 
a description of  the dynamics of  a protein in terms of  non-structural variables is desired. To do so we use the 

N-particle root-mean-square (rms) distance [46], d(t,  t'), between evolving protein configurations to represent the 

fluctuations of  the system. Given two configurations of  the molecule, x(t)  and x(t ' ) ,  with centroids at the origin, 
the mean square distance is defined as the minimum of the residual, d2(t, t') = ( l / N )  ~-~N(x(t) --X'(tt)) 2, where 
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Fig. 2. (a) Contour plot of the rms distance between pairs of conformations adopted by the protein every 25 ps along the 5 ns MD trajectory. 
Regions surrounded by the contours are shaded from white (d ~ 0.5A) to black (d > l.l ,~). The largest rms distance is 1.15,&. 
(b) Contour plot (at 0.1/~ intervals) of the rms distance between pairs of conformations adopted by the protein every 5 ps along the first 
1 ns MD trajectory. 

X~,n(t I) = ~-~j Rijxj,n, N is the number of  atoms in the molecule, Rij are the elements of  an orthogonal rotation 

matrix with determinant +1,  and xi, n is the ith component of  the nth atom in the molecule. A large rms distance 

between configurations at short time difference t - t ~ is indicative of  fast configurational changes. 

The distance matrix d( t ,  t ')  between pairs of  conformations at t and t ' ,  sampled every 25 ps, during the last 5 ns of  

simulation, is shown in Fig. 2(a). A darker gray shading implies a larger rms distance between pairs of  configurations 

and vice versa. The rms distance smoothly increases from 0 to values near 0.5/~ in a short time (50.0 ps), and reaches 

a distance of  near 1.0/~ after 1-2 ns. Oscillations between larger (1-1.1/~) and smaller (0.75/~) rms distances occur 

also at intervals of  200 ps. Normal mode analyses of  the protein dynamics shows the lowest harmonic frequency 

modes to have periods of  the order of  a few ps [47,48]. Therefore the motions responsible for the oscillations seen 

here must originate from non harmonic collective long-range behavior. Fig. 2(b) shows a similar distance matrix, 

but this time over configurations sampled every 5 ps during the first 500 ps. Notice that a portion of the plot that 

appears featureless in Fig. 2(a) exhibits similar oscillations when viewed on this finer scale. Similar features are also 

seen when configurations are sampled over even shorter (1 ps) timescales [29]. These features suggest a hierarchy 
of motions that occur over various timescale decades. 

3.1.1. Tree analysis 

The information contained in d( t ,  t ') is sufficient to construct a hierarchical representation of  configurations 

adopted by the system during the simulation and saved at fixed time intervals. The branching of  such a tree will be 

indicative of  the proximity of  one configuration to another. To build the hierarchy we use the following clustering 
algorithm [49]: 

1. Start with M configurations and a distance matrix, d( t ,  tl), containing the rms distance among all pairs of  
configurations. At this stage, each configuration belongs to a separate cluster. 
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Fig. 3. Hierarchical tree representation of structures (occuring at 5 ps intervals) into different clusters. The distance among clusters is 
proportional to the distance between nodes on the horizontal axes. 

2. Join into one cluster, 1, the two distinct (d # 0) clusters (i, j )  for which d(i, j) is the smallest. Now we have 
M - 1 clusters. To construct the new distance matrix we take d(M-1)×~M-l)(l, k) = min[d(i, k), d(j, k)]. This 

step is repeated M - 1 times, until only one cluster remains. The resulting hierarchy is graphically represented 

by joining each pair of newly clustered configurations by a line of length proportional to the distance between the 

two clustered structures. The resulting hierarchy can be indexed by the distance between clusters. Any indexed 

hierachy can be proven to be ultrametric if we choose the distance between two clusters in the hierarchy to be 

the minimum of the distances among members of each cluster [49]. 
Fig. 3 shows the hierarchical tree obtained by this algorithm. Branches emerging from nodes represent a family 

of structures that are closely related, i.e., they represent configurations in nearby local minima, while members of 
different families are configurations in far-away minima. This hierarchical tree conforms to the idea of a hierar- 

chically rugged energy-like landscape proposed by Frauenfelder et al. [5], where transitions between structures in 
nearby minima are fast, while transitions between far-away states are reached through series of multiple jumps to 
intermediate nearby minima. The tree presented here is just the bottom of a hierarchy representing the energy-like 

landscape; i.e., it covers structures with small differences in the position of a few atoms, to structures differing 
in the relative orientation of helices and turns. The complete hierarchy may extend all the way from fully folded 

structures either to structures that exhibit completely different folding or to totally unfolded structures. The hierar- 
chy presented here has been constructed to satisfy ultrametricity, i.e., to say, the distances between clusters satisfy 
d(i, j) < min[d(i, k), d(j, k)]. However, it should be noted that ultrametricity is a consequence of the choice made 
for the definition of the distance between clusters in the second step of the clustering algorithm and need not reflect 

an inherent property of the biomolecular system. 
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3.2. Molecule optimal dynamic coordinates (MODC) 

The oscillations shown in Fig. 2 and the branching of the tree in Fig. 3 represent collective nonlinear •mo- 
tions [28]. To show this we define a set of directions, m, in the 3N-dimensional space of the protein that best 
represent (in a least-square sense) fluctuations of the protein structure. These "molecule optimal dynamic coordi- 
nates" (MODC) have been previously described [29,45,50,51 ]. Motions along these directions show multi-centered 
oscillations, rapid transitions from one center to another, and damped quasiharmonic oscillations around each 
center. 

A generalization of this method to represent two-dimensional and three-dimensional cuts of the configurational 
space, as planes and volumes, that better represent the dynamics of  the system has also been presented previously 
[44]. Similar methods have been employed by Amadei et al. [52] to describe what they called the biomolecule's 
essential modes, and by G6 et al. [53] who call them principal modes. These coordinates are specific to the molecule 
and trajectory sampled during an MD simulation. The directions m 3N are determined by minimizing the mean 
square distances of  the {ri 3N } configurations normal to m 3N, such that most of  the fluctuations will be along m 3N 
The derivation of this formalism is presented in Appendix A. We calculate the MODC for a system of two molecules 
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Fig. 4. Projections of the 5.0 ns MD trajectory along the three principal MODC is shown on the left panels (a-c). Projections of the 
trajectory on planes spanned by two MODC are shown on the right panels (d-f). 
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in the unit cell, thus including intermolecular motions in the characterization of the dynamics. Water molecules are 

not included in this analysis. The total number of atoms included in the analysis is N = 1308. 
Fig. 4 shows the projection of the trajectory along the three principal MODC. The system shows mean square 

atomic fluctuations of 0.5/~2 during the simulation. MODC 1-3 describe 30%, 12%, and 9% of the fluctuations. 

The first five MODC describe 62% and the first 10 describe 74% of the total fluctuations. That is, a very small 

subset of MODC can represent most of the system fluctuations! This observation has far reaching implications 
concerning the analysis of the system, as it enables us to reduce by many orders o f  magnitude the number of degrees 

of freedom that are necessary for describing the system into only manageably few. Fast inter-basin transitions 

followed by overdamped oscillations (and possibly transitions to other local minima within each basin of attraction) 

can be observed along these MODC. Projections of the trajectory along the ith mode are labeled pi. Large changes 

in conformation are detected at 0.8 (MODC-2), 2.0 (MODC-3), and 3.5 ns (MODC2 and 3). The right-hand side 
panels show the projection of the MD trajectory on planes spanned by only two MODC. The plane on top is spanned 

by MODC 1 and 2, and is the plane that best represents the fluctuations of the system. From this projection it is clear 

that the system gets trapped in four main basins near (pl,  p2) = ( -10 ,  10), ( -10 ,  -10) ,  (0, 0) and (10, 0),/k. A 
projection of the trajectory on the second best plane, spanned by MODC 1 and 3, shows that these basins are further 

separated into other basins. This is better illustrated in a 3D projection of the trajectory on a volume spanned by the 

first three MODC shown in Fig. 5. 
It must be clarified that the MODC analysis yields different eigenvalues and eigenvectors when different segments 

of the trajectory are analyzed. Therefore, a short simulation cannot give an estimate of the most relevant motions of 

the system in a larger simulation. However, a small subset of MODC (~  10) describes most of the fluctuations of the 
system during a longer simulation, although it gives different eigenvalues (i.e., amplitude of the fluctuations) [44]. 

One can expect that the volume covered by a subset of eigenvectors from different time segments is essentially the 
same although viewed from a different perspective. For instance, if we consider the first 2 ns of the trajectory shown 

in Fig. 4, we will find that MODC 2 and 3 will be the dominant modes, while MODC 1 will oscillate around an 
amplitude of - 1 0  ,~. The average conformation will also change. The MODC analysis provides a quantitative tool 

to partition the multi-dimensional configurational space into smaller subspaces that best describe the fluctuations 

of the system and the topology of the energy surface sampled during a trajectory. 
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Fig. 5. Projection of the MD trajectory on the three-dimensional subspace spanned by MODC ml, m2 and m 3. 
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3.3. Diffusion in configurational space 

With the above formalism we can now describe the MD trajectory of the protein in configurational space as a 

particle diffusing in real space and getting trapped occasionally in shallow minima for a finite period of time before 

disentagling itself and moving on. In this section we introduce a model for the dynamics of the protein in which 

we project this motion only on a subset of the principal MODC that are deemed the relevant coordinates of the 

system. The protein configuration is considered a stochastic variable, x (t), moving with a random velocity, ((t) ,  in 
the reduced space of the principal MODC. The MODC are coupled (strongly) to a heat bath consisting of the other 

(possibly quasi-harmonic) MODC and the solvent. Defining the displacements 

t 

] ( ( t ' )  dt '  + x(O). (1) X ( / )  

o 

The ensemble average of the square of the mean square displacement (msd) is 

t t r 

<x2 t)> = f dt' f dt"(((t')((t")), (2) 
o o 

where we assume no correlations between x(0) and ((t)  (i.e., fo '((( t ' )x(O)) = 0). We are looking now for a 
stationary distribution, namely, for a solution where the velocity-velocity correlation function satisfies 

( ( ( t ' ) ( ( t " ) )  = (((It '  - t"l)((0)) ---- t~(It' - t"l). (3) 

The time derivative of the msd displacement is 

t 

-~t (x2(t)) = 2 f d,, (4) 

0 

Thus the integrand on the RHS of Eq. (4) is exactly 6" (It ~ - t"l), the correlation between the velocities of the system 
at time t and t + t t averaged over a long period of time t. For regular diffusion the RHS of Eq. (4) is a constant 
which is usually identified as the diffusion coefficient, D. Eq. (4) elucidates the direct relation between the diffusion 

coefficient and the correlation function, C(It t - t"l). When this function decays exponentially or faster for large 
values of t the integral is finite and the particle (or protein) exhibits a regular diffusive behavior. In contrast, for a 

system diffusing anomalously C(It' - t"l) has a long algebraic tail of the form 

C ( I / '  - t"l) ~- K / t  ~ (5 )  

(other forms of long tails may also exist but are not addressed here). In such a system the msd is characterized by 

(x2(t)) ~ t 2H°, (6) 

where Ho = 1 - a /2 .  The exponent 11o is the H61der exponent, which, in the case of simple Brownian motion, has 

the value 1/2. Values of l i d  > 1/2 (Ho < 1/2) correspond to superdiffusion (subdiffusion). While superdiffusion 
cannot occur with only partial trapping (which always acts to slow down the tracer particle, not enhance its mobility), 
occasional very long jumps of the system in the configurational space can give rise to superdiffusion. This sort of 
behavior belongs to the so-called the 'L6vy flight' class. Inspection of the simulation indicates that indeed such long 
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jumps can occur, but we have not yet substantiated this result quantitatively and the relevance of  the L6vy flight to 

our system is not clear yet. 

In our analysis we define the velocity in the space of the principal MODC as 

x(i + 1) - x(i) 
(( i )  = , (7) 

At 

where the index i denotes the ith configuration along the trajectory of the system and At, the time that it 

takes for the system to reach x(i + 1) from x(i). The (normalized) velocity autocorrelation function is defined 

via 

( ( ( t ) ( (0))  
C ( t )  - -  C~v2 (8) 

where ~r 2 is the variance of the velocity distribution. The velocity autocorrelation functions, C(t), along each 

of  the five principal MODC are shown in Fig. 6. Notice that the C(t) approach a small value for times larger 

than a few ( l -2)ps .  By determining (Ix(t) - x(0)l 2) we can determine the long time behavior of C(t) and 

~(t). 
Fig. 7 shows log-log plots of the msd, (Ix(t) - x(0)]2), along each of the five principal MODC. From these 

curves a few features must be pointed out. First, for intermediate times, ranging from 5 to 800ps, the msd shows 

a power law with exponent smaller than unity (~  0.4). Second, the short time (~  1-10ps) behavior is marked by 

a slower increase than the intermediate range, but the range is too short to determine whether this is a transient, 

finite size effect or a consistent behavior typical of  smaller-scale motions. Third, for all directions, except for the 

first one, the msd reaches a plateau after a certain time, ri, where i stands for the MODC index. The first MODC 

shows what seems to be a sharper increase, which may indicate a different mechanism for larger configurational 
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transformations. Again, the range is too short to fit this behavior with a good degree of  confidence, but a power-law 

fit would give a value larger than 1.5 for times larger than 2 ns. As a guide to the eye, we have included a line 

representing a power of  1.8. 

The plateau in the msd can be argued to be consistent with finite size cutoffs in self-similar systems. In our 

application it may reflect the finite length of  the system that restricts (Ix(t) - x(0)l 2) to be finite. If  we consider 

the projections along each one of  the MODC as a one-dimensional random (but not Brownian) walk then our 

results above indicate that the msd along each of  these directions at a given time decreases as one goes from the 

highest to the lowest eigenvalue. The number of  steps in each of  these separate one-dimensional systems is the 

same and hence they can be considered as displaying the same behavior but with different step sizes. This is also 

consistent with the observation that the crossover to the power law 2HD ---- 0.8 occurs at longer times for higher 

eigenvalues. The fact that the power law l i d  is smaller than 1/2 implies that the diffusive motion of  the system 

covers less volume in the configurational space than a Brownian motion, indicating a strong suppression of  diffusion 

(subdiffusion). The sharp increase in the first direction indicates a faster spreading along this direction as the protein 

becomes more rigid and may point to a well-concerted motion. For comparison, if the power at this regime would 

be 2HD = 2, the interpretation would be of an almost ballistic motion (r ~ t). On the other hand a systematic 

increase in the power with time may suggest that we have indeed a combination of  partial trapping with a L6vy 
flight process and an analysis taking the two effects into acount is more appropriate. This will be carried out in a 

later report. 

The msd for the principal MODC (i.e., the one with largest eigenvalue) is unique in not reaching a plateau in our 

simulation. This suggests that within the 5.1 ns of  our simulation the first MODC describes diffusion in a practically 
unbounded region. We expect longer simulation times to exhibit saturation of  the msd also along this MODC. The 
time needed for all directions to reach a plateu can be regarded as the time required for the protein to cover an 
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appreciable fraction of the configuration space. Similar behavior was observed in a 1.2 ns simulation of crambin in 

aqueous solution [45]. 

Using the Fokker-Planck equation, we can define the probability distribution for the stochastic variable 
x(t) as 

OP(x,t) I i  ~(t,)dt,] O2p(x,t ) 
Ot -- ~ x  2 (9) 

Notice that, fo C(t') dt '  = dlx(t) -x(0)12/dt  ~ t 2H°- l for large t. We can use limt~o~ (Ix(t) -x(0)12) : 2Dt 2H° 
as a scaling law of the msd with time. Defining fractional time t* = t 2140 we can bypass formalisms involving 
fractional derivatives and obtain a traditional diffusion equation, 

8P(x, t*) O2p(x, t*) 
- -  - -  D ( 1 0 )  

Ot* Ox 2 ' 

whose solution is 

l [ ' - - ( x - x ' )  2"] l [ ( x - - x ' )  2 ] 
P(x, t ;x ' , t ' ) - -   exp L j -- x/2rrDlt_t,12Hoexp 4Dlt~t-~H ° . (11) 

The function P(x, t; x', t') describes the conditional probability density of finding the protein in a state x(t) given 
that it was at x~(t ~) at a previous time. Note that in fractional time, t*, the distribution assumes the familiar Gaussian 

form, while in real time it takes the shape of a stretched exponential, a distribution that is known to go hand in hand 
with anomalous diffusion, and which has been observed in measurements of protein dynamics [5-8]. 

4 .  C o n c l u s i o n s  

We have used MD simulation as a convenient method for exploring the configurational dynamics of a small 

protein in a crystalline environment. Nonlinear motions describing oscillations around multi-centered distributions 

are responsible for most of the atomic fluctuations sampled by a protein on the timescale of nanoseconds. These 

atomic fluctuations are not well described by large fluctuations of individual atoms or small groups of atoms, 
but by concerted motions of many atoms, usually referred to by the term 'collective behavior'. These modes are 

nonlinear in the sense that they describe stochastic transitions between different basins of attraction. Evidence of 

these nonlinear modes can be seen in various local structural variables [29] (dihedral angles) and global variables 
(rms distance between all pairs of configurations and clustering analysis). A method for extracting optimal dynamical 
coordinates that best describe the protein fluctuations has been presented. A generalization of this method to identify 

small (1-3) dimensional subspaces of the configurational space has been used to show a description of the protein 
dynamics within the context of multi-basin dynamics. We have constructed an ultrametric hierarchy that partitions 

the thermally accessible states into subgroups of states with similar structures, as measured by the rms distance. 
Using this distance as a measure of the conformational dissimilarities we obtained a set of coordinates (MODC) 

that best represent the fluctuations of the system. We analyzed the projections of the trajectory along these MODC 
as a stochastic process and found that the trajectory of the protein in configurational space can be described by 
an anomalous diffusion process. Assuming partial trapping alone as the cause for the anomalous diffusion, we 
have constructed a Fokker-Planck equation for the conditional probability density of finding the protein in a state 
defined by the position x(t) in configurational space given that it was in a state xt(tl). We have also discussed a 
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possible interpretation of the sharp increase of the spreading behavior of the protein along the main axis in terms 

of a possible LrVy flight picture, where the system's jumps from state to state are more concerted and thus involve 
reaching further minima in the configurational space at shorter times. A detailed analysis of the occurrence of both 

partial trapping and a distribution of jumping distances will be reported elsewhere. 

Experimental measurements of the rebinding kinetics of CO to myoglobin indeed observed a stretched-exponential 
time dependence [5-8]. These observations led Frauenfelder et al. [5[ to propose the existence of a hierarchy of 

motions occurring at various timescales, which results from an ensemble of nearly degenerate states separated 

by a hierarchical distribution of enthalpic energy barriers. This observation is in agreement with our analysis, as 
manifested in the stretched-exponential form of the probability density P (x, t; x I, t ') (Eq. (11 )). The existence of the 

hierarchy of substates has already been verified in several studies [ 1-3]. In analyzing an MD trajectory of crambin 

in solution [29,44] and in crystals we have seen similar phenomena and have shown that transitions from one basin 
of attraction to another do not conform to the traditional paradigm of diffusion or Markovian stochastic processes. 

MD simulations of DNA [50], of a transcription regulation protein [51 ] (CRP), and of an eleven amino acid [54] 

(substance P), all show similar behavior and therefore our analysis seems to apply to all these observations, at 

least qualitatively. The presence of nonlinear excitations in proteins has strong implications on the refinement and 

interpretation of X-ray crystallographic [55-57] and NMR [58] data. 
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Appendix A 

To establish the nature of the conformational space sampled during the MD simulation of a protein we use a set 
of directions m 3N in the 3N-dimensional conformational space that best (in the least-square sense) describes the 
structural fluctuations of the molecule under study. The directions m 3N are determined by minimizing the mean 
square distances of the {ri 3N } configurations n o r m a l  to m 3N, such that most of the fluctuations will be along m 3N 

The distance between a point ri ,  that here represents a biomolecule conformation, and a line with direction m, 
passing through the pointyo, is given by 

d2i = (ri - y o )  2 - [(ri - Y o ) "  m[ 2. (A.1) 

The average square distance between a set of S points representing all the trajectory points of the biomolecule is 
then given by 

S S 
d2 1 = ~ -~ ~_ , ( r i  - y0) 2 - [(ri - Yo)"  m[ 2. (A.2) 

i=1 i=1 

The least-square distance is obtained by finding the 6N parameters yo = {YO~}, and m = {m,~}, with m • m = 1, 
that minimize d 2. That is, we have to minimize a functional of the trajectories, ri (t), and a function of m, Yo and 
;~, 
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L { ( r i  - -y0)  2 [(ri --YO) • m] 2} + ~.[m. m -- 11, (A.3) 
1 

f ( m , y o ,  )~) = -~ 
i=1 

where )~ is a Lagrange multiplier. An extreme value o f d  2 is given by a se tz  = (m,~, Yo,a; a --  1 . . . . .  3N, )~) that 

gives V z f  (Z) = O. T h e  gradient of  f ( m , y o ,  ~) gives: 

(i) with respect toyo:  

~--~{- (r i  - Yo) + [(ri - Yo) • m ] m }  = 0 (A.4) 
2 

V y o f  = 
i=1  

that implies Yo = ½ Y~qS_ i ri , i.e., Yo is the average over all configurations; 

(ii) with respect to ~.: V z f  = m • m - 1 = 0, that normalizes the vector m; 

(iii) with respect to m,,: 

S 

1 E { ( r  i _ yo)~(r i  -- Y0) "m} + ~.mc~ = 0. (A.5) Vma f = ---~ 
i=1  

We can re-write the right-hand side of  this equation as 

1 3N S 

-S E Z (ri - Yo)a (ri - yo)~mf l  = Xmc~. (A.6) 
f l = l  i=1 

Defining 

S 
1 

cra,fl = -~ E ( r i  -- YO)c~(ri -- YO)~, (A.7) 
i=1  

where a~,~ is positive semi-definite, we obtain 

cr - m = )~m, (A.8) 

which is an eigenvalue equation for cr • ~r has 3N eigenvalues, ~-i, and 3N eigenvectors, mi .  

To find out the eigenvectors mi  that minimize d 2, we evaluate d 2 for each line defined by the direction mi and 

Y0, namely, 

1 s 1 s 
d2(mk)= : -i S ,  (ri - y J  yo)"mkl 

' =1  i=1  

: (ri -- yo) 2 -- (ri -- yo)~(r i  -- yo )~mk ,~mk ,~  

~=1 = a=l, f l=l 

= Tr (cr )  - mk  • c~ • mk  

= T r ( a )  - ~.k. (A.9) 

The eigenvector corresponding to the largest eigenvalue can be regarded as to the direction of  the line that passes 

through the average conformation, Y0, which best represents the predominant motions in the protein. The mean 

square fluctuations are given by ( 1 / N ) T r ( a )  = ( l / N ) ~ i ) ~ i .  



238 A.E. Garcfa et al./Physica D 107 (1997) 225-239 

A. 1. Projection on higher-dimensional spaces 

This formalism can be readily extended to define the best (in the least-square sense) D-dimensional subspace to 
describe the motions of the protein. We present results for D = 2 and 3. This generalization can be carried out by 
defining the distance of a configurational point, ri (t), from a D-dimensional subspace as 

D 

d 2 = (ri - yo) 2 - Z [ ( r i  - YO)'mk] 2, 
k=l 

where mk are D vectors spanning the D-dimensional subspace. Then Eq. (A.1) is modified to 

d 2 1 s 1 s D 
= -~ Z d  2 :  -~ E (  r` - y o )  2 -  E [ ( r i - y o ) . m / ~ ]  2 

i=1 i=1 k=l 

(A.IO) 

(A.11) 

and Eq. (A.3) is generalized to 

±{ ° I 
1 

(ri - y o )  2 - E [ ( r i  - Y o )  • ink] 2 
f ( lmk} ,yo ,  {Xk}) = ~ i=1 k=l 

o 
+ )~k[mk .ink -- 11 + E )~kd(mk "mr), (A.12) 

k,l#k 

where Xk and Xk,t are Lagrange multipliers constraining mk to be orthonormal. Following the procedure leading to 
Eqs. (A.3)-(A.9), we find that Eq. (A.9) can be generalized to 

D 

d2({mk}) = T r ( a )  - Z ~.k. (A.13) 
k=l 

Here {ink} represents any subset of D eigenvectors of a. This equation shows that the best planes and volumes 
are spanned by the eigenvectors of a with the largest two and three eigenvalues, respectively. The fitness of each 
subspace will depend explicitly on the specific eigenvalues of a.  To use Eqs. (A.9) and (A. 13) we need to find the 
highest eigenvalues and corresponding eigenvectors of a.  Once the eigenvalues and eigenvectors are calculated, the 

MD trajectory is projected along the eigenvectors, Pi (t) = r(t) .mi ,  i = 1 . . . . .  D. Plots of Pi (t) vs. t show the 
time history (time series) of the trajectory along each direction. Two- and three-dimensional plots of (Pi, pj)  and 
(pi, p j ,  Pk) show 2D and 3D cuts of the configurational space sampled by the protein. Eigenvectors and eigenvalues 
are computed from the simulation data by calculating a in Eq. (A.7). 
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