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We proposea minimal nonlinearmodel of brittle crack propagationby consideringonly the motion
of the crack-tipatom. The modelcapturesmany essentiafeaturesof steady-staterackvelocity andis
in excellentquantitativeagreementvith many-bodydynamicalsimulations. The modelexhibitslattice
trapping. For loadsjust abovethis, the crack velocity rises sharply, reachinga limiting value well
below that predictedby elasticcontinuumtheory. We tracethe origin of the low limiting velocity to
the anharmonicityof the potentialwell experiencedy the crack-tipatom. [S0031-9007(96)02003-0]

PACS numbers:62.20.Mk, 63.20.Ry

Recentmolecular-dynamic$§MD) simulationsof crack
propagation[1,2], as well as experimentalstudies[3,4],
have reflectedgrowing interestin the dynamicalaspects
of brittle fracture, including the approachto a steady
(or quasisteady}¥tate,the buildup of coherentexcitation
near the crack tip [1,2], and the subsequenbnset of
instabilities[5,6]. In all of theseworks, it is fair to say
thata coherentquantitativeunderstandingf the limiting
velocity dependencen the local field has not yet been
advancedthoughmanygoodsuggestionfiavebeenmade
[2,7]. Here,we proposea minimal, one-atom,nonlinear
model for describingbrittle fracture, which we call the
“Einsteinice-skater"(EIS) model.

By closelyobservingmoviesof MD simulationsof brit-
tle crackpropagatiorin atwo-dimensiona(2D) triangular
lattice,undertensile(transversepr model) loadingandat
zeroinitial temperaturewe noticedthat cracksappearto
advanceas a sequencef essentiallyone-particlemoves.
Along the naturalcleavagedirection separatinga pair of
close-packedlanes(lines in 2D), bond-breakingevents
arewell separatedh time [8], which canbe characterized
as a zigzag,ice-skatingkind of motion betweenthe two
lines of atoms. When a bond breaks,the forward part-
ner movesahead,approximatelyalong the former bond
direction, while the rearwardpartnerswings back to its
final equilibrium position (see Fig. 1). This led us to
speculatethat the steady-statevelocity of a brittle crack
could be well approximatedy a single-particleEinstein
cell model, wherethe mobile crack-tip atom (the EIS in
Fig. 1) movesin a field of six immobile neighbors(the
sixth, with whom the bond hasjust beenbroken, is as-
sumedto be beyondthe rangeof interaction). The bond-
breakingeventlauncheghe EIS approximatelyalongthe
bondingdirection. This compressivenonlineareventre-
sults in a shearingmotion along the transversepair of
close-packedines at £60° to the propagationdirection,
andgivesriseto thelocal vibrationalexcitationsthatbuild
up aroundthe cracktip andmove coherentlywith it [1,8].

For sufficiently large strains,the EIS reachesa point
that stretchesthe next bond to breaking after a time
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toeak  SiNCe the last bond-breakingevent. The pattern
thenrepeats—to the othersideof theice-skatingphase—
andthe crackhasthenadvancedy one nearest-neighbor
spacingr, alongthe forwarddirectionin thetime 2tyeaxk -
The crackvelocity is thusgiven by

Ucrack = r()/ztbreak . (1)
To find tpeax, We startfrom the configurationof the EIS
andits five connectechearesheighborsandsolvefor the
time dependencef the distancer(, betweenthe EIS and
its neighborNo. 1; tpea IS thefirst time that rg; reaches
the breakingpoint r,,x. The equationof motion for the
positionr, of the EIS (atomicmassm) is

6

miy = — Z d¢p(roi)/drg, (2

FIG. 1. Initial atomic coordinatesfor crack propagationin a
triangular-latticestrip, four close-packedines wide; the outer
two lines of atomsare fixed, while the inner two are mobile.

Heavy lines indicate equilibrium (nearest-neighborponds of

lengthry = 1; heavydashedines areslightly stretchednearly
vertical bonds; light lines are bonds elastically stretchedto

length r; = 1 + 3€/4 by the uniaxial strain € in the x

direction; the light dashedline is a just-broken bond with

neighborNo. 6. The EIS atomis indicatedby the large open
circle: it movesinitially approximatelyin the direction of the
arrow, stretchingthe bond with neighborNo. 1 until breakage,
thenheadstowardits final equilibrium position(small circle).
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which can be solved given the pair potential
d(roi)) = ¢(Irg — r;]) and the initial conditions.
This equationis not trivial to solve, evenfor harmonic
potentials, but can be solved numerically. We first
assume the initial EIS coordinatesx = a/2, y =0
and velocities x =y = 0 (the initial velocities of
steady-statecrack-tip atomsin full MD simulationsare
observedto be indeedvery small). With ro = 1, the
six immobile neighborsare assumedto be located at
(—a/2,1/2), (a/2,1), 3a/2,1/2), Ba/2,—1/2), (a/2 +
ape,—1/2), and (—a/2 — age, —1/2), where ay =
V3/2, a = ayg(l + €), ande is the uniaxial strainin the
transversalirectionto crack propagation. (SeeFig. 1.)

We can obtain a crude estimatefor ry.e,x by imagin-
ing that the EIS startsat the turning point of its motion
in thefinal harmonicequilibriumwell. Thebulk Einstein
model is characterizedy a frequencyof wp = /3 wo,
where w, is the fundamentafrequencygivenby mwi =
@' (rg). Hence,if the time tpeqx iS one-halfthe period
(from one turning point to the other at bond breaking),
then veaex = V3 rowo/27. Since the triangular-lattice
shear-wavespeedc; = +/3/8 row (which is very close
to the Rayleigh,or surfacewave speed[9]), verack/cs =
V2/m = 0.45, independenbf the anharmonicityof the
potential. Sincethe effectivefrequencyof a stretchedan-
harmonicbonddecrease&ctuallyto zeroattheinflection
point), thecrackvelocity in theanharmonicaseshouldbe
lower.

To go beyondthis estimate we investigatedwo kinds
of attractive snapping-bondootentials: harmonic (HSB)
and anharmonic(ASB), the latter basedon the Morse
potential

$(r) = (1 = 772202, @3)
Here we scale the distanceby ry and the energy by
mriwd; a is the repulsive parameter (the familiar
Lennard-Jones6-12 potential is closely approximated

by a = 6; most materials can be representedby
4= a =6). The ASB potential is obtained from

{1 — (1 = &) [1 - (1 - W{I)]}l/z ~ 1, ASB

)
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Eq. (3) by flatteningit outat rpax = 1 — In(1 — \/x)/«a
in the attractive region (beyond the minimum of the
Morse potential); the cohesiveenergyis then y/2a?,
for y < 1. The ASB force jumps discontinuouslyat
this point from a negative value to zero—hence the
term “snapping bond.” For small displacementsabout
r = 1, Eq. (3) is approximatelyharmonic, (r — 1)?/2.
The HSB potential cuts off at the sameenergy as the
ASB, butat 0, =1+ /x/a < rmx. We find that
the range and maximumattractive force of the potential
are the essential parameters that govern the crack
velocity.

Our choice of snapping-bongotentialsmakesprecise
the definition of the distancebeyondwhich a bondis con-
sidered“broken,” an ambiguousconceptfor completely
continuouspotentials. Sinceour goal is to comparethis
EIS modelwith afully dynamicalsystem,a well-defined
breakingpoint for bothis a distinctadvantage. The fully
dynamical systemswe comparewith are rather restric-
tive, namely, close-packedines of atomsof width w =
4,8, 16, and64, with the outertwo clampedandtheinner
freeto move;moreoverpnly nearest-neighbanteractions
are considered. (Strips were typically 200 in length;
steady-statpropagations attainedwell within 10%of that
length.)

For this thin-strip, fixed-grip geometry, the critical
Griffith strain e for initiating forward crack motion can
be computedby equatingthe potential energyin two
transversesectionsof the strip of height ry/2: one far
behindthe crackwith all bondsin equilibrium, exceptfor
the one brokenbond, and the otherfar in front, with all
bondsequallystretched. The Griffith criterionis obtained
from

(w = Dg(r) = ¢(r2) = x/2a%, (4)
where r, is the elastically stretchedbond (r? = a? +
1/4) and r, is the broken bond acrossthe gap of the
relaxedcrack. The Griffith criterion € is thus

©)
HSB.

An intriguing aspecf the EIS modelis the straightfor-
ward emergencef the lattice-trappingohenomenoifl10]:
unlessthe strain exceedsa value well aboveeg, the dis-
tancebetweerthe EISandits neighboNo. 1 will notreach
rmax- The strain mustthereforeexceedes by a barrier
amountof overstrainthatis a characteristiof the atom-
istic natureof the cracktip, andwhich canonly be evalu-
atedatomistically. In Fig. 2, we showour resultsfor the
crack-tipvelocity (in unitsof ¢;), asafunctionof thestrain,
for the EIS modelandfor thefully dynamicalw = 4 strip

(@ = 6,y = 3). TheEISmodelagreeo within 10% of
the velocity with the MD results—remarkablefor sucha
simplemodel.

However, the lattice-trappingstrain is underestimated
by 13% for the anharmonicand 12% for the harmonic
system,which is most clearly due to neglectedcorrela-
tions with farther neighborsin the EIS model. For the
anharmonicsystem, the onset of crack motion for the
fully dynamicalw = 4 strip occursat a crack velocity
of about 30% of the shear-wavespeed,while for the
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harmonic system,the crack starts at about 50% of the
shear-wavespeed. Under further loading, the crack-tip
velocity increasesoughly linearly with strain but with a
higher slope for the harmonicthan for the anharmonic
system.

To compareour EIS resultsto MD simulationsandex-
perimentswe rescaledthe wider systemstrainsby the
Griffith strain (e ~ 1/4/w) andfound good agreement,
exceptfor slight, but systematicincreasesn the lattice
trappingstrainwith sizefor harmonicpotentials. We can
understanahis by noting that wide anharmonicsystems,
where stretchedbondsweaken,are more compliantand
tendto havelocal strainsnearthe cracktip thatarecloser
to thosein the narrowstrips. Ontheotherhand,harmonic
bondsdo not weakenwith stretching,so that the global
strainsis spreadmore democraticallyacrossthe system.
We emphasizehat,evenin wide systemavheretheglobal
straincanbearbitrarily small,thefactthatlocal strainsnear
the cracktip arelarge (of order 10%, asin the narrow-
strip case)s a significantreasorfor the succes®f theEIS
model.

We find that crack velocities in anharmonicsystems
are essentiallyindependenbf the anharmonicityparam-
eter,atleastovertheranged4 = a = 6; infact,thecurves
for « = 4 and 5 practically overlap. As the cohesive

strengthy decrease$rom % down to % (along with the
rangeof the potential),crackvelocitiesin anharmonicsys-
tems show a slight increase(~10%) in ultimate slope
and greater variability in the jump-off lattice-trapping
strain. (In the limit y — 0, of course,the harmonic
limit is approached7].) In general,velocitiesin anhar-
monicsystemsarelower thanin harmonicones showless
variation with strain, and exhibit relatively lower lattice
trapping(whenthe strainis scaledby e5). Similar trends
are exhibitedin the full MD simulations,including those
usingfull, continuougratherthandiscontinuousnapping-
bond) potentials[1,2,7,8], and those for systemsmuch
wider thanw = 4. Again, the principal differencesare
in the lattice-trappingstrains. We canthereforeconclude
that the EIS approximatewery well the crack-tip atomic
motion, just asour intuition from larger-scaleMD simula-
tions hadsuggested.

Our minimal EIS model indeedconfirms speculations
aboutthe correlationof the limiting steady-staterack-tip
velocity andanharmonicity[2,7,8]. The more“realistic”
anharmonidnteractionsgive steady-staterack-tipveloc-
ities that neverexceed0.4 of the Rayleighspeed,n ex-
cellent agreementwith experimentalobservationg3,4].
With the EIS model, the origin of this low speedcan
clearly be attributedto the smallerattractiveforce on the
crack-tipatomat the point of bondbreaking,ascompared
to the harmonic(or linear elastic)analysis.

Underloading, the thin-strip MD crack-tip velocity in
Fig. 2 jumps sharply at the lattice-trappingstrain to a
slowly rising linear regime, and then once again rises
sharplyat a strain of 0.15 = 1.3¢¢. Close examination
of atomic configurationsrevealedthat this secondrise
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FIG. 2. Crack velocity (in units of shear-wavespeedc,) as
a function of strain for the anharmonicsnapping-bond ASB)
andharmonicsnapping-bondHSB) potentials. Resultsfor the
EIS modelareshownfor Morseparametewr = 6 andcohesive

bond-strengthy = % alongwith w = 4 strip MD simulations
(closedcirclesfor ASB and openfor HSB).

is associatedwith two instabilities: the first is a wake
of large-amplitudesurface(Rayleigh) wavesbehind the
crack tip; at somewhathigher strains, the crack begins
to jump from the central channelto one of the side
channelsnext to the fixed-grip atoms(seeFig. 1). We
have observedthis zigzagpropagationby plus or minus
onechannein muchwider systemswhere,at evenhigher
strains,dislocationsareemitted,followed immediatelyby
branching. Dynamical instabilities such as thesedivert
energyfrom brittle bond breaking,causingthe crack-tip
velocity to dropratherthanrise. Dislocationemissionand
real crack branchingare, of course,forbidden processes
in the artificially narrow4-wide strip, andare completely
absentn the one-particleElS model.

Finally, the hysteresisunder unloading and healing
up of the crack can be obtained from the EIS. To
do this, we simply detectwhen the 6-neighbormodel
reconnectghe bond betweenthe EIS atom and neighbor
No. 6, rather than openingup the crack in the forward
direction. This occurssoonbelow e; for the anharmonic
potential (namely, 0.98), but substantiallylower for
the harmonicpotential (0.85). Crack propagationand
crackhealingarethusquite asymmetrigprocesses.

In conclusion,the Einsteinice-skatermodel of brittle
crack propagationis able to predict quantitatively the
steady-staterackvelocity underloading,includinglattice
trapping,aswell as hysteresisupon unloadingand crack
healing. The maximum velocity achievedin full MD
simulationsas a function of strainis principally limited
by the anharmonicityin the attractiveregion of the pair
potential, which is capturedby the EIS; however,it is
alsoaffectedby instabilitiesthatinvolve collectivemotion
(energy buildup, dislocation emission, and branching),
which is inaccessibleto the one-particle EIS model.
Neverthelessthis simple EIS modelallows usto explain,
in quite satisfactoryquantitative fashion, the effect of
nonlinear motion of the crack-tip atom on the limiting
crackvelocity.
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