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Abstract. Structural characteristics of two-dimensional elliptic granular packs with various aspect ratios
and intergranular friction coefficients were studied using the Discrete Element Method (DEM). Isotropic com-
paction from random unjammed state leads to a jammed state with polycrystals of orientationally ordered clus-
ters (OOC). The OOCs were identified using a cluster labelling algorithm, based on the relative angle ∆θ be-
tween the major axes of two contacting particles. The threshold value of ∆θ was optimised to give the strongest
correlation between OOCs and the force chain network. We found that the resulting OOC size distribution
decays algebraically with an exponent of −2, independently of grain aspect ratio and material properties.

1 Introduction

The microstructural characteristics of granular materi-
als play an important role in determining their macro-
scopic properties and behaviours. For simplicity, par-
ticles in granular materials are often treated as disk or
sphere in two- and three-dimension, leading to consider-
able progress, both theoretically [1–3], experimentally [4,
5] and numerically [4, 6–8]. However, this simplification
makes it impossible to study a key issue: that grain shapes
play a central role in, and correlates strongly with, the
macroscopic structural characteristics [9–13]. The obvi-
ous next level in modelling grain shapes is by ellipses and
ellipsoids and much of the work on such systems has fo-
cused on macroscopic nematic ordering. Yet, the details
of grain-scale orientational ordering and cluster determi-
nation are also significant, as these affect strongly macro-
scopic features.

The aim of this paper is to investigate orientationally
ordered clusters (OOCs) of two-dimensional elliptic par-
ticles on the grain-scale. We define clusters on the basis
of the relative orientation of contacting grain pairs, with
a threshold chosen to give the strongest correlation be-
tween OOCs and the force chain network. Then we in-
vestigated the characteristics of the distribution of the re-
sulting OOCs.

2 Numerical simulations

Our numerical simulations were carried out using the dis-
crete element method (DEM) [14]. The packing procedure
of our systems is the same as in [7, 8] for discs. Defin-
ing a particle’s effective sizes as D = 2

√
ab, with a and

b the major and minor axes of the ellipses, respectively,
we generated Ntotal = 10, 000 particles within a double
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periodic domain. The particle sizes were distributed uni-
formly around a mean D̄ = 1.02 and ranged between 0.663
and 1.38. The system sizes, Lx = Ly, ranged from 101D̄
to 103D̄. This small dispersity stems from the slight to-
tal particle volume differences for each case. The initial
packing fraction was set to 0.84 - just below jamming. To
avoid overlaps between particles in the generation of the
initial packing , we let particles move freely with a slight
background viscosity until an unjammed static state was
obtained. From that initial state, the random pack was
compressed slowly and isotropically by changing the peri-
odic length in both directions. The compression continued
until the stress reached a desired value and the kinetic en-
ergy fell below a very small level. For more details about
this procedure, see [7, 8]. We studied systems of aspect ra-
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Figure 1. The bi-variate PDF of contact pairs as a function of ∆θ

and f / f̄ . The colour scale provides the probability density. The
red lines show the mean contact force f̄ as a function of ∆θ.



tios: α = a/b = 1.0 (discs), 1.5, 2.0 and 3.0, with the first
used as a check against existing disc simulations. For each
aspect ratio, we simulated five intergranular friction coef-
ficients: µ = 0.01 (almost frictionless), 0.1, 0.2, 0.5 and
10.0 representing infinite friction) - altogether 20 different
systems.

Following the isotropic compression, we computed for
each system the probability density function of contact
pairs P( f / f̄ ,∆θ), where f / f̄ is the contact force magni-
tude normalised by mean contact force, and ∆θ the rela-
tive angle between the major axes of the two interacting
particles (Fig. 1). We observed that, in systems with large
aspect ratios and low intergranular friction, contacts be-
tween pairs with small relative angle ∆θ are more likely
to carry large contact forces and vice versa. This corre-
lation between f and ∆θ is observed in all our systems,
but it becomes weaker with decreasing α and increasing
µ. Similar relation between contact forces and local grain
shapes were observed numerically [15, 16] and experi-
mentally [17, 18].

3 Cluster structure characteristics

3.1 Cluster labelling algorithm

The cluster labelling is carried out by going over every
contact and checking ∆θ. If it is smaller than a set thresh-
old ∆θ0 we either declare the two particles to be in the
same cluster or combine the two clusters to which they
belong. Expecting cluster structures to depend mainly on
∆θ0, we next introduce a method to evaluate the correla-
tion between the cluster configurations and force chains.
We show that this method allows us to set an optimal value
for ∆θ0.

3.2 Correlation between clusters and force
networks

Once clusters have been identified, we label contacts by
Y = 1 or 0, depending on whether the pair in contact is
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Figure 2. The correlation coefficient ρ f ,Y (∆θ0) for various aspect
ratios α and intergranular friction coefficients µ.

fully inside a cluster or not, respectively. In particular, a
contact between particles belonging to different clusters
is labelled Y = 0. The correlation coefficient between f
and Y , ρ f ,Y , allows us to investigate the relation between
clusters and force networks as a function of α and µ.

Fig. 2 shows ρ f ,Y as a function of ∆θ0 for all the 20 sys-
tems. In the limits ∆θ0 → 0, π/2, ρ f ,Y → 0, correspond-
ing to the extreme cases in which all contacts are either
outside or inside clusters, respectively. In between, a peak
appears, ρmax

f ,Y at some ∆θc, corresponding to a maximum in
the number of strong force chains inside the clusters. We
regard ∆θc as the optimal criterion for ∆θ because (i) the
number of single particles belonging to no cluster is min-
imal; (ii) the fraction of strong force chains propagating
within clusters is highest. The latter is expected because it
is easier to transmit forces through a contact along the flat-
ter surfaces of two ellipses and clusters contain the largest
number of particles aligned in such a way.

In Fig. 3 we plot ρmax
f ,Y as a function of the aspect ratio

α for different intergranular friction µ. While ρmax
f ,Y always

increases with µ, the rate of this increase decreases with µ
to a very weak dependence on α when µ→ 10.

In Fig. 4 we show the value of ∆θc as a function of α
for different friction coefficients µ. While ∆θc generally
decreases with α, the dependence of the rate of this de-
crease on µ does not appear to be monotonic. This may
be because the peak in Figure. 2 is not very sharp, which
gives rise to an error in the measured value of ∆θc. Never-
theless, the trend in this plot can be understood as follows:
as α increases, ellipses shape approaches the long needle
limit, in which case a very small value of ∆θc is required
to obtain ρmax

f ,Y .

3.3 Cluster size distribution

Defining the OOC size, ncl as the number of particles
in the cluster, we plot in Fig. 5 the PDF of ncl, includ-
ing single-particle clusters (SPC, ncl = 1). Although the
range of sizes is relatively small, this PDF appears to de-
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Figure 3. The maximum correlation coefficient, ρmax
f ,Y , against α,

for different intergranular friction µ, with interpolating lines to
guide the eye.



creases roughly as a power law that depends weakly on
α and µ. The noise at high cluster sizes is due to the
reduced statistics for large clusters. In Fig. 6 we plot
the ratio of single particles not belonging to any cluster,
Φ = NS PC/NOOC . This ratio decays slowly but monotoni-
cally on α and clearly increases µ. This ratio is largest in
systems with small α and large µ, which means that in such
systems fewer particles are grouped into clusters. In Fig. 7
we plot the PDFs of the OOC sizes for all systems, exclud-
ing the single particle. Significantly, all the plots collapse
onto a master curve for 2 ≤ ncl ≤ 16, which can be fitted
well by a power law, P (ncl) ∼ nA

cl, with A ≈ −2. The exact
fitting parameters are shown in the figure. The interpreta-
tion of this power remains to be understood. Fig. 8 shows
examples of packing structures of various systems (top)
and their mesoscale interpretation as a multi-phase con-
tinuum (bottom), in which the OOC clusters and the sin-
gle particles are represented by hatched and gray regions,
respectively. In these examples, each top figure is an en-
largement of the red square area in the corresponding bot-
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Figure 4. The value of ∆θc, where ρ f ,Y peaks, vs. the aspect ratio
α for different intergranular friction µ. The red line shows the
mean value of ∆θc for each α.
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Figure 5. The cluster size PDFs, P(ncl), for various aspect ratios
α and intergranular friction coefficients µ.

tom figure. The directions of the hatched lines represent
the mean long axis orientation of the particles in the clus-
ter, which makes these regions easy to shear in those direc-
tions. The mesoscopically-defined orientation makes this
method useful as a basis for using crystal plasticity models
of polycrystalline solids [19, 20] to predict macroscopic
granular material properties and behaviours with different
grain shapes and intergranular friction coefficients.

4 Conclusions

To conclude, we have studied the dependence of oriented
cluster structures in 2D elliptic granular assemblies un-
der isotropic compression. We investigated the correla-
tion, ρ f ,Y , between the force chain network and clusters by
varying the threshold value ∆θ0 in our cluster labelling al-
gorithm, and found that this correlation peaks at a certain
value ∆θc, implying that these clusters contain the high-
est fraction of the large force chains. Expecting such a
correlation in real systems, we defined ∆θc as the optimal
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Figure 6. The fraction of single particles, Φ, vs. the aspect ratio
α for various values of µ.
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Figure 7. The cluster size PDFs, P(ncl), for various aspect ratios
α and intergranular friction coefficients µ appear to collapse onto
a master curve.



Figure 8. Top: examples of clusters and force networks, with α =1.5 and 3.0, µ =0.01 and 10.0. Same-color particles belong to a
specific cluster. Particles shown in red lines do not belong to any cluster. Particles shown in doted lines are rattlers. The solid lines
connecting particles represent contact forces, with the width representing the force magnitude. Bottom: zoomed-out views of clusters.
Each top figure is a zoom-in on the red square area in the figure below it. The areas filled with shadowed lines are specific clusters.
The inclinations of the shadowed lines represent the mean orientation of the particles in the cluster. The gray areas are regarded as
homogeneous. ∆θc is chosen as the mean value in Fig. 4.

threshold for cluster identification. The value of the largest
correlation coefficient, ρmax

f ,Y , appears to increase with α
and decrease with µ. In contrast, our data suggests that
∆θc only decreases with α. The fraction of single particles
belonging to no cluster and the PDFs of cluster sizes were
analysed and were found to be sensitive to both α and µ.
Intriguingly, we found that P(ncl) collapses onto a power-
law master curve for all our systems, P(ncl) ∼ n−2

cl . This
study focused on relatively dense initial pre-compression
states, with packing fractions of 0.84, and we intend to ex-
tend it to include looser pre-compression states, as well as
different preparation protocols and shearing procedures.
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