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Simulations of biomolecular dynamics are commonly interpreted 

in terms of harmonic or quasi-harmonic models for the dynamics of 

the system. These models assume that biomolecules exhibit oscilla- 

tions around a single energy minimum. However, spectroscopic data 

on myoglobin suggest that proteins sample multiple minima. Transi- 

tions between minima reveal a broad distribution of energy barriers. 

This behavior has been observed in other biomolecular systems. 

To elucidate the nature of protein dynamics we have studied a 

1.2ns molecular dynamics trajectory of crambin in aqueous solution. 

This trajectory samples multiple local energy minima. Transitions 

between minima involve collective motions of amino acids over long 

distances. We show that nonlinear motions are responsible for most 

of the atomic fluctuations of the protein. These atomic fluctuations 

are not well described by large motions of individual atoms or a small 

group of atoms, but rather by concerted motions of many atoms. 

These nonlinear motions describe transitions between different basins 

of attraction. The signature of these motions manifests in local and 

global structural variables. 

A method for extracting Molecule Gtimal &namic Coordinates 

(MODC) is presented. A generalization of this method is used to 

identify small (1-3) dimensional subspaces of the configuration space 
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describe the dynamics of the protein within the context of nonlinear, 

multi-basin system. 

We present a model for describing the dynamics of biomolecules 

in terms of an open Newtonian system (protein) coupled to a stochas- 

tic system (solvent). Autocorrelation functions of the displacements 

along relevant MODC show that the protein loses memory of its 

configuration within a few picoseconds. The diffusion of the pro- 

tein in configuration space is anomalous, namely, the time depen- 

dence of the mean square displacement is not proportional to time, 

but to t2HD where ~ H D  is a nontrivial fractional exponent. There- 

fore, transitions among energy minima far apart in configuration 

space exhibit a stretched-exponential time dependence, scaling as 

t-2HD exp(-t-2HD), with HD < 0.5. This picture is consistent with 

a model suggested by Frauenfelder and collaborators to explain mul- 

tiple timescale relaxation processes .observed in myoglobin. 

1 INTRODUCTION 

Experimental studies of the low temperature (T < 180K) rebinding kinetics 
of CO and 0 2  to myoglobin exhibit a stretched-exponential time dependence 
(2). This suggests the existence of a hierarchy of motions occurring at 
various time-scales resulting from an ensemble of nearly degenerate states 
separated by a distribution of enthalpic energy barriers (1, 7, 8, 15). This 
behavior is not unique to myoglobin and it seems to be a characteristic 
of many biomolecular systems (23). However, this does not imply that 
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this hierarchy of substates is always directly involved in protein function. 
Numerical evidence (molecular dynamics and Monte Carlo simulations) for 
the existence of these substates have been reported (6, 13), although the 
conclusions of these reports are not free of controversy (3). The dynamic 
characteristics of such systems has also been described (9, 12). 

Here we demonstrate the existence of multi-basin nonlinear motions in 
proteins in the picosecond time-scale. We will describe a method for extract- 
ing coordinates that best represent the fluctuations in the system. We show 
that the molecular dynamics trajectory of the protein is clustered around 
few local minima (basins of attraction), and that many transitions among 
local minima occur within the 1.2 ns trajectory. 

' We put forward an alternative model for describing the dynamics of 
biomolecules in which the trajectory is analyzed in terms of an open system 
(describing relevant dynamical variables of the protein) coupled to a heat 
bath (Le., solvent and other, less relevant, protein degrees of freedom). This 
analysis shows that the protein loses memory of its configuration within a 
few picoseconds. We find that the diffusion of the protein state in  con- 
figuration space is anomalous. That is, the time dependence of the mean 
square displacement (msd) is not proportional to time, but exhibits a power 
law behavior, t2HD. This implies that transitions among energy minima 
far apart in configuration space will exhibit a stretched-exponential time 
dependence, - t - 2 H D  e ~ p [ t - ~ ~ d ] .  

The analysis of an MD trajectory presented here is consistent with a 
model suggested by Frauenfelder and collaborators (1, 2, 7, 8, 15) to ex- 
plain multiple timescale relaxation times observed in myoglobin. We show 
here that the protein samples multiple local energy minima that can be 
classified into an ultrametric hierarchy. Thus we calculate that the diffusion 
of the protein in configuration space can be characterized by a stretched- 
exponential in time. 
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2 DESCRIPTION OF THE SYSTEM 

We have studied the dynamics of a small hydrophobic protein, crambin, in 
aqueous solution, by a molecular dynamics (MD) simulation at constant 
temperature. Crambin is a 46 amino acids amphipathic protein for which 
high resolution X-ray (14), neutron diffraction (24) and NMR (20, 27, 28) 
data are available. Detailed experimental and theoretical studies of the 
hydration and dynamics of crambin have been reported in the literature 
(19, 25, 26, 29). Crambin is a small that contains most structural elements 
characteristic of larger proteins. Starting from the N-terminus and moving 
along the protein chain we find a P-strand (amino acids 1-4), a loop (amino 
acids 5-6), a helix (amino acids 7-19), another loop (amino acids 20-22), 
another helix (amino acids 23-30), another P-strand that makes hydrogen 
bond with the first /3 strand to form a P sheet (amino acids 32-35), and 
a turn (amino acids 41-44). Three disulfide bonds are formed by Cys(3)- 
Cys(40), Cys(4)-Cys(32), and Cys( 16)-Cys(26). Because of these disulfide 
bonds the connectivity of the amino acid chain is not well described by a 
quai-one-dimensional chain. 

In this simulation study crambin was contained in a box of dimension 4 42.11 x 36.85 x 29.34 %, containing 1315 water molecules. The initial 
conformation of the protein was obtained from the crystallographic coordi- 
nates reported by Hendrickson and Teeter (14). The system contains 4353 
atoms; 408 in the protein and 3945 in the solvent. The system was equi- 
librated during a period of 24 ps. The production extended over 1200 ps. 
A previous description of the dynamics was reported for the first 216 ps 
after equilibration (9). Details about the system and simulation have been 
described in a previous paper (10). 
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3 RESULTS AND DISCUSSION 

3.1 Distance Matrix 

In a previous paper we have shown that the distributions and time depen- 
dence of the protein backbone dihedral angles (Z), (4, $),, are typical of 
a system with multiple potential energy minima (9). The q5 and II, dihe- 
dral angles for residues forming part of ,&strands and turns show bi-modal 
distributions while the helical regions of the protein show sharp unimodal 
distributions. Time-series of some angles are found to be characteristic to 
systems showing intermittency (17). That is, there occur many fast flips 
from one conformation to another, following rapid underdamped oscilla- 
tions. 

The inter-dependence of local structural-variables describing collective, 
delocalized excitations is not trivial. A the description of the dynamics of 
a protein in terms of non-structural variables is desired. To obtain such a 
description we need to find a measure that will represent the fluctuations 
of the system. We have employed the N-particle root-mean-square (rms) 
distance (21), d(t,  t'), between evolving protein configurations. A large rms 
distance between configurations at short t - t' are indicative of fast config- 
uration changes. 

. 

The distance matrix d(t, t') between pairs of conformations at t ,  t', sam- 
pled every 6 ps, during the simulation, is shown in Fig. 1. A darker gray 
shading implies a large rms distance between pairs of configurations. A 
lighter gray shading implies a small rms distance between pairs of config- 
urations. The configurations of the protein during the first 50 ps of the 
trajectory are far away from other configurations in the trajectory. The 
rms distance smoothly increases from zero to about one 8, in a time near 
50 ps. Oscillations between larger (1.5-2.0 A) and smaller ( 1.0 A) rms 
distances occur also at intervals of about 50 ps. Normal mode analysis of 
proteins show the lowest frequency modes to have periods of a few ps (19), 
indicating that these oscillations are not normal modes. 
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3.1.1 Tree-Analysis. Classification of SampIed Conformations 

The results shown above suggest that the m s  distance can be used to 
detect conformational transitions among local minima. The information 
contained in d ( t ,  t’) is sufficient to build a hierarchical representation of all 
configurations adopted by the system. The branching of such a tree will 
be indicative of the proximity of one configuration to another. To build 
the hierarchy we use the following clustering algorithm (18): First, start 
with N configurations and a distance matrix, d(t,t’), containing the rms 
distance among all pairs of configurations. At this stage, each configu- 
ration belongs to a separate cluster. Second, join two distinct (d # 0) 
configurations, i and j ,  for which d(t,t’) is the smallest into one cluster. 
Now we have N - 1 clusters. To build the new distance matrix we take 
d(N-l)X(N-l)(new, k) = min[d(i, k), d( j ,  k)], where k runs over the struc- 
tures in all remaining clusters. This step is repeated N - 1 times, until only 
one cluster remains. 

The resulting hierarchy is graphically represented by joining each pair 
of newly clustered configurations by a line of length proportional to the dis- 
tance between the two clustered structures. This hierarchy can be indexed 
by the distance between clusters. Fig. 2 shows a radial representations 
of the hierarchy obtained by clustering configurations sampled at constant 
time intervals (3 ps) along the trajectory. We have added labels indicating 
the time (in ps) at which the configuration represented in the tree occurred 
in the molecular dynamics trajectory. All configurations belong to a clus- 
ter with a branch point (labeled 0) near the center of the diagram. This 
point represents the stem of the tree in a hierarchical representation. Each 
branch emerging from this point represents a family of structures that are 
closely related, i.e., they represent configurations in nearby local minima, 
while members of different families are configurations in far away minima. 
This tree conforms to the ideas presented by H. Frauenfelder (7), where a 
hierarchy of structures exist and transitions between structures in nearby 
minima are fast, while transitions to far away states are reached through 
multiple jumps. We believe that the tree presented here is just the bottom 
of this hierarchy; i.e., it goes from structures differing in the position of a 
few atoms to structures differing in the relative orientation of helices and 
turns. The complete hierarchy may extend from folded structures to struc- 
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tures that exhibit completely different folding or unfolded structures. It is 
quite plausible that a complete tree may show that the stem represented by 
0 is only one branch of a larger tree. The hierarchy presented here have 
been constructed to satisfy ultrarnetricity (Le., the distance between clusters 
satisfy d ( i , j )  5 min[d(i, k), d( j ,  k)], for all I C ) .  However, ultrametricity is 
a consequence of the choice made for the distance between clusters in the 
second step of the clustering algorithm and do not fully reflect properties 
of the biomolecular system. 

3.2 Molecule Optimal Dynamical Coordinates (MODC) 

3.2.1 Method 

The oscillations shown in Fig. 1 and the branching of the tree in Fig. 2 
are the signature of collective nonlinear motions (9, 12). It is important to 
establish the nature of the conformational space sampling (single-basin, i.e.; 
. quasi-harmonic motion versus multi-basin nonlinear motions) performed 
during the molecular dynamics simulation of a protein in solution. To do 
this we use a method that involves the construction of a set of directions 
6 in the 3N dimensional conformation space that systematically describes 
the structural fluctuations of the molecule under study. This method has 
been described previously (9, 11, 12). A generalization of the method to 
represent two-dimensional (plane) and three-dimensional (volume) cuts of 
the configuration space that best represent the dynamics of the system has 
also been published (12). These coordinates are specific to the molecule and 
trajectory sampled during a molecular dynamics simulation. 

The directions 6 are determined by minimizing the mean square dis- 
tances of the (6) configurations normal to 6, such that most of the fluctua- 
tions will be along 6. The distance between a point <, that here represents 
a given biomolecule conformation, and a line parallel to 6, passing through 
a point yo, is given by 

4 = (6 - fo)2 - [(< - io). IJ]? 
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The average square distance between a set of S points representing points 
along the trajectory of the biomolecule is then given by: 

The least square distance is obtained by finding the parameters = {gob}, 
and 6 = {&}, with 6 tSi = 1, that minimize 8. That is, we have to 
minimize a functional of the trajectories, r;(t) ,  and a function of 6, go and 
A, 

l S  
f(6, go, A) = 3 E{ (6 - go)2 - [(e - go) - %I2} + X[75 * 75 - 11, [2] 

i=l 

where X is a Lagrange multiplier. Mimization of Eq.(2) gives: 

l S  go=--c< , s i=l 

indicating that is the average over all configurations, and 

U rii = X75, 
where 1 s  

[31 

Here (T has 3N eigenvalues, Ai, and 3N eigenvectors, rii;. 

To find out the eigenvector 75i that minimize 8, we evaluate 8 for each 
line defined by the direction A; and 30. That is, 

#(Si;) = Tr(u) - X; . [el 
The eigenvector corresponding to the largest eigenvalue gives the direction of 
the line passing through the average conformation, $0, that best represents 
the predominant motions in the protein. 

Eqs: (4) and (5) are closely related to the definitions used in the quasi- 
harmonic approximation (4, IS), in which the eigenvalue system solved in- 
volves the matrix 
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Here u is defined by Eq. ( 5 )  , ui’ refers to an element of the inverse 
of the matrix u, and a, is the mass of atom a. The difference between 
quasi-harmonic analysis and the analysis presented here is that we do not 
assume unimodal distributions of the atomic fluctuations (;.e.; motions in 
a single basin of attraction ore in other words, around a single minimum 
energy structure). The quasi-harmonic approximation assumes the rela- 
tion between the mean square displacement and the eigenfrequencies of a 
harmonic system to identify a set of temperature dependent frequencies. 
These eigenfrequencies will, under the assumption of harmonicity, deter- 
mine the thermodynamics of the system in a closed form. The accuracy of 
the resulting thermodynamics strongly depends on the assumption of quasi- 
harmonicity, which is incorrect. Clarage et al. (5 )  have incorrectly cited 
our work (9) as to imply just the opposite. Any approach that relies on a 
quadratic form of the Cartesian displacements (i.e., correspondence analysis 
or principal component analysis (IS), quasi-harmonic analysis, etc.) of the 
molecule will end with either the matrix u or its inverse. The similarity 
in the mathematics is not a reflection of the diagonally opposite positions 
adopted in interpreting the results. The significance of the eigenvectors and 
eigenvalues of u will strongly depend on the model used to interpret them. 
In any case, the time series and distribution of the projection along the 
MODC are clearly indicative of nonlinear dynamics. 

The above formalism can be easily extended to define the best (in the 
least square sense) D-dimensional subspaces that describe the motions of 
the protein (12). This generalization gives 

D 
d2({&})  = Tr(u)  - C Xk 

kl 

Here { t f i k }  represent any subset of D eigenvectors of 0. This equation shows 
that the best planes and volumes are spanned by the eigenvectors of u with 
the largest two and three eigenvalues, respectively. The fitness of each 
subspace will depend explicitly on the specific eigenvalues of 0. Depending 
on the number of dominant largest eigenvalues in this Eq. (S), we can now 
choose a small number of representative coordinates (typically two or three) 
to describe the dynamics of the system. 

Once the eigenvalues and eigenvectors. are calculated, the molecular dy- 
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namicg trajectory is projected along these principal coordinates 

Plots of p ; ( t )  versus t in Fig. 3 show the history (time series) of the tra- 
jectory along each direction. Two- and three-dimensional plots of ( p i ,  p j )  

and ( p ; , p j , p k )  (Figs. 4 and 5 ,  respectively) show 2D and 3D cuts of the 
configuration space sampled by the protein. Eigenvectors and eigenvalues 
are computed from the simulation data by calculating Q in Eq. (5 ) .  

3.2.2 Numerical Results 

Figs. 3a-e show the projection of the trajectory along the five principal 
MODC (left) and the histograms of the occurrence of all values p i ( t )  for the 
same coordinates. The histograms of the population distributions can be 
fitted to multi-centered distributions. Each center is indicative of different 
basins of attraction. The time series resulting from the trajectory projec- 
tions along the MODC are also characteristic of nonlinear systems. Patterns 
of fast inter-basin transitions followed by overdamped oscillations (and pos- 
sibly transitions to other local minima within each basin of attraction) are 
observed. The rms fluctuations of the coordinates during the simulation are 
1.38 A, with Tr(a)  = 779.3 A2. The first five directions account for 73% 
of the fluctuations (as measured by the msd), with the first direction alo,ne 
accounting for 43%. 

Projections of the trajectories on 2-dimensional subspaces of the con- 
figuration space better characterize the nature of the motions described in 
Fig. 3. Figs. 4a-b show projections of the first 310 ps trajectory on planes 
spanned by the directions 6 1  and 6 2  (with the largest'eigenvalues) and 6 2  

and 6 3  (the best planes that exclude the direction 61). The initial (t = 
0 ps) and final (t = 310 ps) positions of this trajectory on the planes are 
labeled in the figures. The distribution of conformations in Fig. 4a show 
four basins of attraction with centers near (p1 ,pz)  = (I) (20,10), (11) (5, 
-12), (111) (-7,-5) and (IV) (-12,lO). These points are chosen to identify 
the four basins and do not carry any other significance. Basin I contains 
the initial configuration and is well separated from the other three basins. 
The other three basins are densely sampled during the trajectory. 
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Figs. 5a-b show the projections of the trajectories on two-dimensional 
subspaces spanned by directions 6, and 62 obtained after analyzing 0.75 
ns and a 1.2 ns trajectories. The initial and final points (in time) in the 
trajectories are labeled by I and F, respectively. These two-dimensional 
projections of the trajectories are closed, namely, basins of attraction are 
revisited. The sampled configuration space describes a torus. The basins 
sampled during the 310 ps trajectory (shown in Fig. 4b) are contained 
within the lower left quadrant of Fig. 5a. However, at the larger time 
and length scales shown in Fig. 5a we can only distinguish two basins of 
attraction. The four basins shown in 4b are within one basin in Fig. 5a. 
This illustrates the self-similarity of the trajectory. When comparing Figs. 
5a and 5b notice that the directions .liil and $2 are exchanged (i.e., the 
figure is rotated) and that a new region of configuration space along 6 1  was 
sampled during the last 0.4 ns of the 1.2 ns trajectory. 

The trajectory projected on a three-dimensional subspace spanned by 
the first three MODC is not closed. That is, basins that appear to be re- 
sampled in a two dimensional projection are not resampled when viewed 
in a 3-dimensional projection. Therefore, conclusions regarding 'the equi- 
libration of the system must be judged depending on the criteria used for 
defining equilibration. In the field of biomolecular dynamics it is custom- 
ary to interpret a plateau in the nns distance from the initial structure, 
d ( t ,  t' = 0), as a signal of equilibration. Fig. 1 clearly shows that this is not 
the case. The rms distances among structures separated in time reaches a 
plateau, but this only implies that they are sampling different conforma- 
tions. We have used the projections along MODC to look for resampling 
of configurations along the trajectory. One-dimensional projections show 
resampling of basins within short (200 ps) timescales (9). Two-dimensional 
projections show resampling of basins within longer (750 ps) timescale, and 
three-dimensional projections do not show resampling of basins within the 
1.2 ns trajectory. 
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3.3 Diffusion in Configuration Space 

In this section we introduce a model for the dynamics of the protein in which 
a subset of the principal MODC is considered as the relevant coordinates of 
the system. The protein configuration is considered a stochastic variable, 
( ( t ) ,  moving in the reduced space of the principal MODC. It is coupled 
(strongly) to a heat bath consisting of the other MODC and the solvent. 
Defining 

z ( t )  = lt 0 C(t')dt' + z(0) 

(z2(t))  = J' 0 dt' If' 0 dtN(z(tl)5(tl l))  

P O I  
The ensemble average of the square of the mean square displacement is 

[111 

Assuming no correlations between z(0) and [ ( t )  we have Ji'(C(t')z(O)) = 0. 
We are looking for a stationary distribution, namely, for a solution where 

(c(t')c(t")) = (C( It' - t"l)s'(O)) = C( It' - t"l) 1121 

Thus the time derivative of the displacement is 

The integrand on the r.h.s. of Eq.(13) is C(lt'-t''l), the correlation between 
the position of the system at time t and the position at time t + t'. For 
regular diffusion the r.h.s. of Eq. (13) is constant which is usually identified 
as the diffusion constant, D. Eq. (13) elucidates the direct relation between 
the diffusion coefficient and the correlation function, (?(It' - t"1). When 
this function decays exponentially for large values of t the integral is finite 
(regular diffusion). In contrast, for a system diffusing anomalously e( It' - 
PI) has long algebraic tails 

2;( It' - t"l) N rep. 1141 

(z2(t))  - t 2 H D ,  ~ 5 1  

In such a system the mean square of the displacement is characterized by 

which identifies HD as 
HD = 1 - ~ ~ 1 2 .  
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The exponent HD is the Hilder exponent, which, in the case of simple 
Brownian motion, has the value 1/2. Values of HD > 1/2 ( H D  < 1/2) 
correspond to superdiffusion (subdiffusion). 

In our analysis we define the velocity in the space of the principal MODC 
as 

z(i + 1) - z( i )  <(i) v(t)  = -- - 
At At P71 

where the index i denotes the i-th configuration along the trajectory of 
the system and At, the time hat it takes the system to reach from z( i )  to 
z( i  + 1). The (normalized) velocities autocorrelation function is defined via . 

where a: is the variance of the velocity distribution. The velocities autocor- 
relation function, C(t), along each of the five principal MODC are shown 
in Fig. 6. Notice that C(t) approaches a small value for times larger than 
a few (2-3 ) ps. By determining (Iz(t) - z(0)12) we can determine the long 
time behavior of C(t)  and C(t). 

Fig. 7 shows log-log plots of the msd,  (lz(t) - z(0)12), along each of the 
five principal MODC. From these curves a few features must be pointed 
out. First, the short time behavior exhibits a power law in time with an 
exponent larger than one. Second, for intermediate times, ranging from 
1 -100 ps, the nzsd shows a power law with exponent smaller than one 
(- 0.8). The later value is indicative of anomalous subdiffusion. Third, for 
all directions, except for the first one, the msd reached a plateau after a 
certain time, rj, where i stands for the MODC index. 

-This behavior is consistent with finite size cutoffs in self similar systems. 
In our application it reflects the finite length of the system that forces 
( Iz( t )  - z(0)I') to be finite. If we consider the projections along each one 
of the MODC as a one-dimensional random (but no Brownian) walk then 
our results above indicate that the square displacement along each of these 
directions also decreases from the highest to the lowest eigenvalue. The 
number of steps in each of these separate one-dimensianal systems is the 
same and hence they can be considered as displaying the same behavior 
but with different step sizes. This is also consistent with the observation 
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that the crossover to the power law ~ H D  = 0.8 occurs at longer times for 
higher eigenvalues. The fact that the power law H D  = 0.4 is smaller than 
1/2 indicates that the diffusive motion of the system covers less volume in 
the configurations space than a Brownian motion, namely, subdiffusion. 

The msd for the principal (Le., the one with largest eigenvalue) MODC 
does not reach a plateau in our simulation. This implies that within the 1.2 
ns of our simulation the first MODC describes diffusion in an unbounded 
region. Longer simulation times will allow the msd along this MODC to 
also reach a plateau. The time needed for all directions to reach a plateu 
in the msd displacement can be taken as the time required for the system 
to appropriately cover configuration space. 

Using the Fokker-Planck equation, we can define the probability distri- 
bution for the stochastic variable x(t) as 

Notice that, S,'C(t')dt' = dlz(t) - z(0)12/dt - t 2 H D - 1 ,  for large t. We can 
use limt_,m(lx(t) - x(0)12) = 2 D t 2 H D  as a scaling law of the nzsd with time. 
Defining fractional time t* = t 2 H D  we get the diffusion equation 

P O I  aqX, t*) a 2 q X ,  t*) 
a x 2  

= D  at* 
with solution 

For long times, the time dependence of the transit.ion of the protein from 
one state characterized by the variable x' to another state characterized 
by x, obeys a stretched-exponential. In the experiments on myoglobin by 
Frauenfelder et al., (1, 2, 7, 8,  15) the state x' is the state immediately after 
photolysis and the trajectory x ( t )  describes the rebinding of CO. In cram- 
bin, the MODC represent events that influence the Cartesian-coordinate 
fluctuations and not a reaction coordinate. However, by identifying a sig- 
nal that characterizes two states along the MODC we expect to observe a 
similar stretched-exponential time dependence. 
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4 CONCLUSIONS 

We have used molecular dynamics as a convenient method of exploring the 
configuration dynamics of a-small protein in solution at room temperature. 
From the results presented here we can conclude that nonlinear motions de- 
scribing oscillations around multicentered distributions are responsible for 
most of the atomic fluctuations sampled by a protein on a 100 ps time-scale. 
These atomic fluctuations are not well described by large fluctuations of in- 
dividual atoms or small groups of atoms, but by concerted motions of many 
atoms. These modes are nonlinear in the sense that they describe tran- 
sitions between different basins of attraction. Evidence of these nonlinear 
modes can be seen in various local structural variables (dihedral angles) and 
global variables (ms distance between all pairs of configurations and clus- 
tering analysis). A method for extracting optimal dynamical coordinates 
that better describe the protein fluctuations has been presented. A gen- 
eralization of this method to identify small (1-3) dimensional subspaces of 
the configuration space has been used to show a description of the protein 
dynamics within the context of multi-basin dynamics. 

Experimental measurements of the rebinding kinetics of CO to myo- 
globin observed a stretched-exponential time dependence (1, 7, 8, 15). These 
observations led Frauenfelder et al. (7) to propose the existence of a hier- 
archy of motions occurring at various timescales, which results from an 
ensemble of nearly degenerate states separated by a hierarchical distribu- 
tion of enthalpic energy barriers. In analyzing an MD trajectory of crambin 
in solution we have seen essentially the same phenomena and have shown 
that nonlinear motions are responsible for transitions from one basin of 
attraction to another. We have constructed an ultrametric hierarchy that 
partitions the thermally accessible states into subgroups of states with sim- 
ilar structures (as measured by the rms distance). Using the mzs distance 
as a measure of the conformational dissimilarities we obtained a set of co- 
ordinates (MODC) that best represent the fluctuations of the system. The 
treatment of the projections of the trajectory along these MODC as stochas- 
tic variables leads to a description of the trajectory of the protein in con- 
figuration space as an anomalous diffusion process. We have constructed 
a Fokker-Planck equation for the conditional probability density of finding 
the protein in a state defined by the position z(t)  in configurational space 
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given that it was in a state ~ ' ( t ' ) .  The solution to this equation exhibits a 
stretched-exponential in time, consistent with experimental observations in 
myoglobin. 
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5 Figure Captions 

Figure 1. Contour plot of the root-mean-square distance between pairs 
of conformations adopted by the protein at 6 ps intervals along the 1200 
ps molecular dynamics trajectory. Regions surrounded by the contours are 
shaded from white (d M 0.50 8)  to black (d 2 2.0 8). The largest m s  
distance is 3.00 A. 

Figure -2. Radial tree representation of structures in different clusters. The 
numbers around the tree show the time (in ps) at which the structure occurs 
in the trajectory. 

Figure 3. Projection p i ( t )  of the 1200 ps molecular dynamics trajectory 
along the five principal MODC are shown on the the left-hand-side plots. 
W e  refer to the figures as a-e, from top to bottom. The-right-hand-side 
plots show histograms of the frequency of occurrence of all values of p;(t) 
for the corresponding vectors. p i ( t )  are given in 8, and t in ps. The labels 
on top of each curve show the eigenvalue ordering (from large to small) and 
the corresponding eigenvalues, X (in A')). 

Figure 4. Projection of the molecular dynamics trajectory on the plane 
spanned by directions (a) rsil and 6 2 ,  and (b) 6 2  and 6 3 ,  for the first 310 
ps of the trajectory. 

Figure 5. Projection of the molecular dynamics trajectory on the plane 
spanned by MODC r4il and $2,  for the first 750 ps trajectory; and (b) 6 1  

and 6 2  for the 1.2 ns trajectory. 
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. 

Figure 6. Time dependence of the velocity autocorrelation function for the 
five principal MODC. n 

Figure 7. Log-log plot of the mean square displacements along the five 
principal MODC as a function of time. 
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