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Abstract. The microstructure of granular materials is the main factor determining their macroscopic behaviour. We study sys-
tematically the statistical characteristics of volume elements (called quadrons) of microstructures of mono- and polydisperse
planar disc packs granular and report a number of new results. The packs analysed were of different intergranular friction
coefficients ,µ, contained about 20,000 discs each and were brought to mechanical equilibrium under identical isotropic com-
pression stresses from three different initial states: loose, intermediate and dense. Our findings are the following. (i) The
rattlers volume fractionφr is not affected by the disc size distribution (DSD). (ii) Excluding the rattlers, we find that the
relation between the packing fractionφ ′ and the mean coordination number ¯z is independent of the initial state. Together with
result (i), this allows us to separate the effects of the DSD and the initial state on the microstructure. (iii) We relate analytically
z̄, φ ′ and the (normalised) mean quadron volume ¯v′. (iv) Combining (iii) and a relation between ¯z and the mean cell order, ¯e,
derived from Euler’s topological relation, we show that (ii) is a result of the geometrical relation between ¯v′ andē. (v) The
probability density function of the quadron volumes, normalised by ¯v′, is universal for all the studied systems and it can be fit
reasonably well by aΓ distribution.
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INTRODUCTION

In spite of the key role that granular materials play
in human society and the sensitivity of significance of
their their mechanical properties to the microstructures,
the structure-mechanics relation is yet to be understood
[1, 2, 3, 4, 5]. Understanding the pore-scale statistics in
granular solid is also important to their transport proper-
ties [6, 7] and to a range of applications, e.g. in planetary
science, materials, geotechnical and energy engineering.

Here we use the quadron description [8, 9] to study the
microstructural characteristics of numerically-generated
planar granular solids, through the statistics of the
quadron volumes. Several packs were prepared by the
same procedure, varying interparticle friction, initial
generation states and disc size distribution and we stud-
ied the effects on microstructural properties: quadron
volume distribution, mean coordination number, and
packing fraction.

QUADRON: A BASIC VOLUME
ELEMENT

The quadron description, proposed in [8, 9, 10] involves
elementary volume elements, quadrons, that tessellate
the granular space and are used to quantify the local
structure [11, 12]. This description has been used to
construct a stress theory of isostatic granular materials

[8] and a statistical mechanical formalism [9, 10, 13].
In contrast to other definitions of volume elements,
e.g. Volonoi-based tesserations [4], quadrons preserve
the connectivity information, since their construction is
based on the force-carrying intergranular contacts. They
also make possible an unambiguous local quantitative
description of the microstructure.

Fig. 1 illustrates the 2D quadron construction. First,
one defines the centroids of grainsg and cellsc as the
mean position vectors of the contact points around them,
respectively. Then, the contact points around every grain
are connected to make polygons, whose edges are vec-
tors, r⃗gc, that circulate the grains clockwise. Next, vec-
tors R⃗gc are extended from the grain centroids to the
centroids of the cellsc surrounding them. A quadron
is, generically, the quadrilateral whose diagonals are the
vectors⃗rgc andR⃗gc. Since every pairgc corresponds to
exactly one quadron, we denote a quadron byq for con-
venience. The quadron’s volume is computed asVq =|
r⃗q× R⃗q | /2 = (rq

xRq
y − rq

yRq
x)/2

NUMERICAL EXPERIMENTS

For our numerical experiments we used the Discrete El-
ement Method (DEM) ([14, 15]). It consists of using an
incremental time marching scheme, wherein the motion
of each disc is computed by Newton’s second law. We
postulate a repelling harmonic interaction between discs
with a normal and tangential spring constants,kn and



FIGURE 1. Quadrons (shaded) and cells (yellow).

ks, activated upon contact and overlap between discs.
We setks/kn = 1/4. We prepared four sets of systems,
each with a different cumulative disc size distributions
(DSDs), U0, U1, U2, and U3, shown in Fig. 2. U0 has a
mono-dispersed DSD while U1 to U3 are uniform with
different ranges.

The packing protocol of our systems is as follows.
First, we construct two random almost jammed packs of
about 20,000 discs, for each material in a double periodic
domain. One system is a loose pack, of packing fraction
φ = 0.74, and the other is the densest unjammed pack
whose packing fraction is different for different systems.
The two almost jammed configurations, loose initial state
(LIS) and dense initial state (DIS), are then used as
initial states for the packing procedure, giving us 8 initial
specimens.

Once an initial state is set, we assign all the parti-
cles a friction coefficient,µ , and apply to the system a
slow isotropic stressσc by changing the periodic length
in both directions. The stress level is limited such that the
average overlap of discs isδ = σc/kn = 10−5. No grav-
itational force is applied and the compression continues
until the fluctuations of both grain positions (per mean
grain diameter) and inter-granular forces (per mean av-
erage contact force) are below very small thresholds -
10−9 and 10−6, respectively. This procedure is carried
out for each initial state at five different values of the
inter-granular friction coefficients:µ = 0.01,0.1,0.2,0.5
and 10, giving altogether 40 different assemblies. Here-
after we denote them as, e.g. U0-LIS-0.01.

STRUCTURAL ANALYSES

For all the systems we computed the packing fractions
φ , mean coordination numbers ¯z and the statistical prop-
erties of quadrons. As expected, ¯z is mainly controlled
by µ , as shown in Fig.3. The initial state has hardly any
effect and nor does the DSD, except in the monodis-
perse systems (U0), where the difference is probably due
to crystallisation. To determine ¯z, we ignore ‘rattlers’,
which are discs with one or no force-carrying contact,

FIGURE 2. Uniform DSDs for four systems: U0, U1, U2 and
U3. U0 has a monodisperse DSD.

because they do not contribute to the structural stabil-
ity. The values of ¯z ranges between 3 and 4 in U1-U3
systems, consistent with the isostatic theory for random
packs [16, 17].

We show the relations between ¯zandφ for all the sys-
tems in Fig. 4. The packing fractions of the U3 systems
are larger than in U1 and U2, which is due to the differ-
ent DSDs - with higher fractions of small discs one can
fill pores more effectively [18]. The U0 systems exhibit
a different trend because of their crystalline regions.

FIGURE 3. The collapse of ¯z(µ) for all systems except U0.

FIGURE 4. The raw relations ¯z(φ) (rattlers included).

Fig. 5 shows some examples of the granular packs in
static equilibrium together with their cell structures. In



general, the larger the interparticle friction the larger the
cells, as expected. Rattlers, which do not contribute to the
mechanical stability, exist in all systems and affect the
packing fraction. The packing fractions in Figs. 5(a) and
5(b) are very similar, but the cells in 5(b) are typically
larger, giving different ¯zs. We note that Figs. 5(b) and
(c), whose ¯zs are similar, seems to have similar cell sizes
although their DSDs and packing fractions are quite dif-
ferent. Fig. 5(d) clearly shows that the smooth monodis-
perse packs develop crystalline regions. The cell size is
closely related to the cell order, defined as the number
of edges around the cell polygon, and to its quadron vol-
umes, as we discuss later.

FIGURE 5. Examples of the cell structures: (a) U3-LIS0.01
(z̄=3.94, φ = 0.845); (b) U3-DIS10 (¯z=3.10, φ = 0.848); (c)
U1-LIS10 (z̄=3.07,φ = 0.804); (d) U0-LIS0.01 (¯z=4.47,φ =
0.868).

Since we ignore rattlers both in the calculation of ¯z
and in the quadron construction, it is natural to con-
sider the rattler-free packing fraction,φ ′. It is defined
as φ ′ = N′

gV̄
′
g/V, whereN′

g and V̄ ′
g are the number of

discs and the mean disc volume after removing rattlers,
andV is the total system volume. Fig. 6 shows the re-
lation between ¯z and φ ′. Except for monodisperse sys-
tems, the effect of the initial state has disappeared almost
completely, indicating that the difference in the pack-
ing fraction, often attributed to the initial state, can be
traced to the difference in the rattlers fraction. To ex-
plore this issue, we identify the rattlers volume fraction,
φr = 1−N′

gV̄
′
g/NgV̄g, which gives a relation betweenφ ′

andφ ,

φ =
φ ′

1−φr
(1)

Plotting z̄ againstφr for all systems (Fig. 7), we note
that, for µ = 0.01, all systems have an almost identical
value ofφr , except for the monodisperse system. Taken
together with Eq. 1, this means that the DSD affects only

φ ′, notφr . It follows that the initial state, which does not
appear in Fig. 6, affects onlyφr . In turn, this shows that
we can separate the effects of the DSD and the initial
state on the packing fraction - the former affectsφ ′ and
the latter affectsφr .

FIGURE 6. z̄ vs.φ ′ depends only on the DSD.

FIGURE 7. Relation between the mean coordination number
z̄ and the rattlers volume fractionφ ′

We next derive the following useful relation for rattler-
free packs,

φ ′ =
N′

gV̄
′
g

V
=

N′
gV̄

′
g

NqV̄q
=

1
v̄′z̄

(2)

where v̄′ = V̄q/V̄ ′
g is the mean quadron volume, nor-

malised by the mean grain volume, andNq is the total
number of quadrons. This relates ¯v′ directly to z̄ andφ ′.
Combining this relation with an identity between ¯z and
the mean cell order ¯e, based on the Euler’s topological
relation [19],

ē=
2z̄

z̄−2
+O

(
1√
N

)
(3)

where the rightmost term is a (negligible) boundary cor-
rection, we see that ¯v′ is a direct function of ¯eandφ ′.

In Fig. 8 we plot ¯v′ against ¯e for all the systems.
All the curves collapse nicely including all U0s. The
small deviations are due to the effect of the DSD on the



φ ′− z̄ relation (Fig. 6). The relation between ¯v′ andē is
key to the understanding of the structural characteristics;
we can see from Fig. 1 that the quadron volumevq is
related to the cell order via the increase ofRgc with cell
order. To illustrate this effect, we approximate the cells
as regular polygons. Then the quadron volume isvRPC=
cot(π/e)/π. As observed from Fig. 8, this relation gives
a tight upper bound to the numerical results. Although
this approximation ignores the effects of cell shapes,
DSD, frequency of cell orders and so on, the dependence
of v̄′ on ē is arguably the origin of the relation ¯z(φ ′) in
Fig. 6.

The PDFs of the normalised quadron volumes,u =
v′/v̄′ = Vq/V̄q, collapse nicely to one master curve for
all systems with the same DSD, as seen in Fig. 9 for
10 U3 systems. This master curve is fitted well by the
Γ distribution,P(u) = ααuα−1e−αu/Γ(α), with α = 2.
Repeating the same for U0-U2 systems, we find the
same result withα increasing slightly with decreasing
polydispersity. Nevertheless, the collapse is not as sharp
because the fluctuations ofv′ cannot be neglected [11].

FIGURE 8. v′ (ē) collapse to one curve for all systems.

FIGURE 9. PDF of the normalized quadron volumeu =
Vq/V̄q for 10 U3 systems

CONCLUSIONS

We studied the structural properties of the disc assem-
blies, varying the interparticle friction, disc size distribu-
tion and initial state. We found that the rattlers are es-
sential to understanding the packing fraction and struc-

tural characteristics. The mean quadron volume is pri-
marily controlled by the mean cell order, which also de-
termines the rattler-free packing fraction with respect to
the mean coordination number. Relating these variables,
as we have done, allowed us to normalise the quadron
volume distributions [19] and collapse them to a master
curve. This collapse shows that the structures of granu-
lar systems are determined by the DSD, while the initial
state and friction coefficient can be scaled away.
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