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A class of strongly nonlinear composite dielectrics is studied. We develop a general method to reduce
the scalar-potential-field problem to the solution of a set of linear Poisson-type equations in rescaled
coordinates. The method is applicable for a large variety of nonlinear materials. For a power-law rela-
tion between the displacement and the electric fields, it is used to solve explicitly for the value of the bulk
effective dielectric constant €, to second order in the fluctuations of its local value. A simlar procedure
for the vector potential, whose curl is the displacement field, yields a quantity analogous to the inverse
dielectric constant in linear dielectrics. The bulk effective dielectric constant is given by a set of linear
integral expressions in the rescaled coordinates and exact bounds for it are derived.

I. INTRODUCTION

A strongly nonlinear dielectric is one where the non-
linearity appears as the leading form of the behavior un-
der the application of an external field, rather than as a
small correction to a predominant linear response. Such
a nonlinear behavior is quite common when a sufficiently
strong field is applied to any condensed medium. But un-
der static conditions it is usually difficult to apply the
strong field necessary to reach the nonlinear regime of a
dielectric. Nevertheless, there are special cases, where
such a regime is attained without difficulty in other types
of macroscopic response. For example, nonlinear electri-
cal conductivity is found in many ceramic conductors,
while nonlinear elastic behavior is usually observed under
stresses that approach breakdown threshold for rupture.?
In dielectrics, nonlinear behavior is routinely observed
under the intense ac fields that are available from lasers.
Our motivation for the present study is mainly theoreti-
cal: nonlinear response is notoriously difficult to handle.
Except when the medium as well as the boundary condi-
tions are completely uniform, there are almost no known
methods for calculating the behavior of such systems,
other than by brute force numerical solution of the ap-
propriate nonlinear differential equation.

In this paper we study the problem of calculating the
bulk effective macroscopic properties of a strongly non-
linear composite medium. Specifically, we address the
case of a nonlinear dielectric composite, whose com-
ponents are isotropic and obey a local constitutive rela-
tion of the form

D(r)=e(r)|E(r)|PE(r), (1.1
where the nonlinearity exponent 3 is the same every-
where, but the nonlinear dielectric constant e(r) differs
from component to component. The macroscopic behav-
ior of the medium is described by the relation between
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the volume averaged electric field (E) and the volume
averaged displacement (D). It can be shown that under
the above assumptions, and when the composite is isotro-
pic, this relation has the form

(D)=¢,{(E}AE),

where €, is the bulk effective nonlinear constant, which,
like e(r), is independent of the field E(r). To calculate €,
one needs to know the local field within the medium un-
der boundary conditions that would result in a uniform
field E(r)=E, if the medium were homogeneous. Our
approach to solving this problem is to expand
E(r)=—V®(r), and consequently €,, in powers of the
spread 8¢ of the different possible dielectric constants of
the components.

Our main results are the following.

(1) The electric potential field, ®(r) can be found, to
any finite order in 8¢, by solving a hierarchy of linear
Poisson equations in the composite medium.

(2) The bulk effective nonlinear dielectric constant €, is
expressed, to any finite order in ¢, as an explicit integral
involving ®(r) up to a lower order in Se.

(3) The above two results are actually applicable to a
more general class of nonlinear constitutive relations
than that expressed by (1.1).

(4) The value of €, is found exactly to second order in
8¢, extending a classic result for the linear case.> An
analogous treatment yields the corresponding value of
the quantity w=e~1/#*1_ To this order, both results are
found to be independent of the detailed microgeometry of
the composite.

(5) Exact bounds are found for the value of €,.

The outline of the rest of this paper is as follows: In
Sec. IT we expand the scalar potential field ®(r) around
its value in a homogeneous medium subject to the same
boundary conditions. We show that each term in this ex-
pansion can be found by solving a linear differential equa-
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tion of the Poisson type. In Sec. III we present an expres-
sion for the nth order term in the expansion of €, by us-
ing the solution for ¢ only up to order (n —2). For com-
pleteness, we give the exact result for €, to second order
in 8¢.* An analogous result for o, (defined above) is also
presented, but the derivation is given in the Appendix.

II. EXACT ITERATIVE PROCEDURE
FOR THE SOLUTION OF THE SCALAR
ELECTROSTATIC POTENTIAL FIELD

Consider a charge-neutral medium composed of grains,
each of which is assumed to be homogeneous in its dielec-
tric properties. Different grains are assumed to have
different dielectric constants €;. Each of the grains fol-
lows (1.1) with the value of 3 being identical for all of
them. The system occupies a volume between two con-
ducting plates at z =0 and at z =L, and is assumed to be
very large in all other dimensions. The potentials on the
plates are ®(z =0)=0 and ®(z =L)=E,L. Altogether
the material is composed of N different components with
€; (i=1,2,...,N), distributed in the system with respec-
tive concentrations p;. The local dielectric constant can
be written as

e(r)=3¢;0,(r), 2.1

where ©; is the step function whose value is 1 within the

grains of the ith component and O elsewhere. The
volume average of the local dielectric constant is
1
(e)=7fe(r)dd =§pie,. . 2.2)

Under the above imposed boundary conditions, a homo-
geneous system having a dielectric constant €, gives rise
to a constant field in the z direction, E,. The value of ¢,
around which €, (and everything else) is expanded, can be
arbitrary.

We proceed to show that the potential field can be gen-
erally found via an iterative procedure. Before embark-
ing upon this calculation, it should be noted that there
are cases where an inhomogeneous medium can be solved
exactly in a straightforward manner. These cases are spe-
cial due to the particular geometrical internal structure
of the composite. One such case consists of regions of
different dielectric constants whose interfaces are parallel
to the field and perpendicular to the capacitor plates [Fig.
1(a)]. In this configuration e(r) is constant along any
path in the direction of the field. Since the tangential
component of E must be continuous at the interfaces, the
internal field remains constant and perpendicular to the
plates, i.e., E=E,Z everywhere. Consequently, the dis-
placement field D varies in a simple way within this com-
posite. Thus, using (2.1), the volume average of D is
found to be

(D)= [enEE a=EF" ' Spe, @3

where the summation is over the i different values of the
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FIG. 1. An inhomogeneous nonlinear dielectric system with
regions of different values of e that are arranged (a) as parallel
(not necessarily circular) cylinders with interfaces that are per-
pendicular to the capacitor plates and (b) as flat slabs that are
parallel to the capacitor plates.

dielectric constant. It follows that

€, = >Di€; . 2.4)
1

Another solvable geometry consists of slabs of regions
with different dielectric constants that lie in parallel to
the plates [Fig. 1(b)]. On an interface between any two
regions the normal component of D must be continuous
approaching from both sides. Within each region the
medium is homogeneous so that D does not vary. It fol-
lows that D does not change along a path perpendicular
to the plates and D=D,Z is constant over the entire
volume of the system. Averaging the electric field over
the volume yields

. D 1/(B+1)
=2 Zo d
(E)= v f d°r
=D(1)/(/3+1)2pi6i1/(/3+1) ) 2.5)
Hence the bulk effective dielectric constant is
(2.6)

_ —1/(B+1) ) —(B+1
€= [Zp,-e,- /6 ] B+
i

These two microgeometries correspond to nonlinear con-
ductors in parallel and in series, respectively, and indeed
the forms of €, resemble very much the corresponding
effective conductances of those configurations.>~’

We now turn to discuss general composites. In a
homogeneous medium the field is uniform E,Z2= —V®,,
and hence we expect that if the local dielectric constant
can be expanded around some constant value €, the po-
tential ® can be also expanded around P, i.e.,
O=Py+3 . ,6"P. To implement this we first write
(1.1) in a more general form

D=¢€(r)f(E*)E, 2.7)
and consider its nth variation
8"D /ex=f(E3)8"E+2f'(E2)Ey8"E)E,
—Fy({86™E};m <n), (2.8)

where F is some function that contains correction terms
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to E of order strictly less than n, along with powers of
de=e(r)—e¢, Expanding the equation

divD(r)=0 2.9
term by term, we obtain the following form for §"®,
y242 [0/ 0x) 3,, |8"®=F, , (2.10)
dlnx |x=g2

where F; depends only on terms in the expansion of ®
that are of order strictly lower than n. The left-hand side
(Ihs) of (2.10) can be now transformed by rescaling the
coordinates as follows:

x—x, y—y, z—(=z/VB+1,
where

dInf(x)

B=2 dlnx

x =E3 )
This transformation yields, in the rescaled coordinates,
V28"®=F,(€y,8¢,Eq,8E, ..., 8" 'E), (2.11)

which has the form of a linear Poisson equation. 1t is true
that for each set of boundary conditions the z axis is res-
caled differently, but this should not pose a problem,
since the scaling factor B depends only on the average
field E;, which is independent of the spatial coordinates.
Equations of this type have been studied extensively, and
a large body of knowledge exists concerning approaches
for solving them. Thus, in principle, (2.11) provides a
systematic iterative procedure for calculating the nth or-
der correction to the potential ®, that uses solutions for

J

2BE, BE,
8’d(p)= 8P 8P+ [ d%’ SP—8
e) \/[5+1 do+ [dp VBT 0P Tem
2
\//3+1 [ d%" G(p,p" )3 [6®(V' 260 +2(3,60)*] .

Substituting (2.14) into (2.15) gives a combination of dou-
ble integrals containing products of the form 87(p)d7(p’).
In general, to solve for the nth order of ® one has to con-
sider n-tuple integrals over p,p,,...,p,. These in-
tegrals contain combinations of derivatives of Green’s
functions G (p,p;),G(p,,p,), etc., with products of the
form 87(p,)dn(p,) - - - 879(p,). This multiple product can
be expressed in terms of products of differences of the
form 8%n(p,)—(87n), that are mathematically well
behaved (namely, the volume average of each of them
vanishes). When the composite is macroscopically uni-
form, averages of such products depend only on relative
coordinates. It can then be shown that when the system
is large compared to the lengths of spatial decay of these
averages, we can replace the above products in the calcu-
lation of €, by their averages. This is demonstrated
below in the calculation of 8%,. Thus our method en-
ables to reduce the calculation of €, of the nonlinear
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lower-order corrections.

In the particular case of power-law nonlinearity as in
(1.1), B =p. It is easy to see that only in this case, is B in-
dependent of E,. Thus we obtain the following equation
for the first variation 8P

V26d =

div(87E,) , (2.12)

1
vB+1
where n=€/¢, and dn=n—1.
(2.12) can be written as

Eg
VB+1
in terms of a Green’s function G (p,p’), that satisfies

VG=—-8p—p'),

A formal solution to

3P(p)=—

JGp.p13.8m(p)d% ,  (2.13)

G =0 on the boundaries. Here the integration is carried
out in the rescaled coordinates p’. Integrating (2.13) by
parts and using the condition that G =0 on the bound-
ary, it is found that

8D(p)=— J8:G(p,p")[80(p")—(8m) 1d %" ,

Ey
VB+1
(2.14)

where the inclusion of the constant {87 ) in the integrand
contributes nothing to the integral due to the zero bound-
ary condition on G. The purpose of this inclusion will be-
come apparent below. The variables p and p’ are position
vectors in the rescaled coordinates. A similar procedure
yields the following formal solution for the second
correction to ¢

V'6®-V'G(p,p’)

(2.15)

[

medium to a set of weighted n-point correlation functions
of de(p).

III. CALCULATION OF €, TO SECOND ORDER IN §¢

We next proceed to find the first and second-order
corrections to €,, 8¢,, and 8%,, exactly. Starting from

the energy density*
—_ Btl  repgd
“T BTV JEDa%

and carrying out a first variation calculation on both
sides yields

o= S |9

(3.1)

fV(I)‘ B+2

0

+Ey P e(r)8(|VD|PT?) lddr . (3.2
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The second term on the right-hand side (rhs) can be ex-
panded and integrated by parts to yield

B+2
Eg+2

$ s5e(r)|VOIPYP-as—; [0 divD d’r | .

Both terms within the rectangular brackets vanish—the
first, since 8¢ =0 on the boundary, and the second be-
cause of (2.9). This leaves

Vel
E,

B+2

_1
de, = [ Be(r) dr . (3.3)

Therefore, to first order, one can replace ® by @, to get

de,=(e)—¢, - (3.4)

This coincides with the exact result (2.4) for the real sys-
tem shown in Fig. 1(a). It is now easy to show that
€, <{e€), as in linear composites.®° Since (3.1) expresses
the total energy (divided by the volume) in the system,
which is minimal, any trial function for E that satisfies
the boundary conditions yields a larger value for €, when
substituted for the actual field in the integrand. In par-
ticular, choosing E; as the trial function, one immediately
verifies the above claim. Moreover, since €,=(e)
comprises a realizable upper bound on €, (see above),
then this bound is optimal under the given information
on the system. From (3.4) one can also conclude that ¢,
cancels out to first order.

Applying the 6 operator again to relation (3.3) we ob-
tain the second variation

(B+2)E0—(I3+2)

8%, = [ 8e(r)| VO A(VD-VED)dr .

E"‘(B+2)

8, =~ — [se(r)s" (VOIFah . (3.6)

As can be seen from (3.5), the nth order correction to €,
requires the knowledge of ® up to, at most, order (n —1).
As it turns out, for all n = 3, one actually needs to know
® only up to order n —2 as we now proceed to show. We
first demonstrate explicitly that 8%, depends only on 8®.
Starting from (3.5), integrating by parts and discarding

the surface term, one obtains

X (B+2)Ey Bt

8 Ee = 7

X [ 8@ div[5e|VO|PVD]dr . 3.7

From (2.9) the following equality can be extracted:
div[e 8"(|VP|PV®)]= —n div[8e 8" " 1(|VD|AVD)] .

(3.8)
Substituting (3.8) with n =1 into (3.7) and retracing the
integration by parts we obtain

(B+2)E(;(B+2)

8%, =— =

[es(|Vofve)-vod ddr .
(3.9)

Applying now a small variation to both sides of (3.9) and
using (3.8) with n =2 one gets

(ﬁ+2)E0_(B+2)

. > — [8e8(|VO|fvD)- VoD dr

+ [e8(|VO|PVD)- V8D dr

4
(3.5) (3.10)
In general, the nth order correction to €, is It can be shown that the following is an identity:
J
3(|VD|PVD)- V82D =8|V |PVD)- VoD —B|VB|P~4(V$-VED)[(B—2)(VD-VED ) +3|VD|2Vsd|?] . (3.11)
Substituting this into (3.10) and using (3.8) for the integration of the first term on the rhs of (3.11), yields finally
(B+2)E—(B+2)
8, =—— " |3 [8e8(IVOI°VO)- Vo dr
+B [ el VI HVD-VEP)[(B—2)(V-V8D)+3|VD|? VoD |2 ]dr |. (3.12)

Thus the third-order correction to €, depends only on ® and §&®. Further application of the & operator n —3 times to
(3.12) yields that the nth-order correction to €, depends on ® only up to order » —2 as claimed above.

We now proceed to calculate the bulk effective dielectric constant explicitly to second order. Note that in the linear
case this calculation is done under the following assumptions: (i) the correlation between fluctuations of e(r) at different
points is short ranged compared to the size of the system, (ii) the material is homogeneous on length scales that are
much larger than the correlation length, and (iii) the medium is isotropic. We now extend this calculation to the non-
linear case with no additional assumptions.

Using 8® =0 on the boundary, one can integrate (3.5) by parts and observe that adding a constant to de(r) leaves the
result unchanged. In particular, it is possible to replace 8e(r) in (3.5) by [8e(r)—(8€)]. Substituting relation (2.13) for
8® in (3.5) and changing the integration variables to the rescaled coordinates yields

_ &(B+2)
© VBF1IV

2

[ ddp [[d%{[8n(p)— (8> 1[8n(p")—(67) 1}d,+G(p,p") . (3.13)
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Changing variables to p and to R=p’' —p and integrating  One of the volume integrations now becomes trivial and
over p first, at fixed R, one can see that for large values of yields the rescaled volume, Q=V¥/V B+1, leaving, for

R (above the inhomogeneity correlation length) the in- d>2,

tegral vanishes due to the independence of the fluctua- )(B+2)

tions in 7(p) and n(p+R). For small values of R we can 8%, = 7 fddR g(R)3;Go(R) . (3.16)
use the Green’s function, given below, which depends B+1 il

only on R, and identify the integral over p as the average [t should be emphasized that this relation depends only
of the term in the curly braces. Therefore, we can replace  gp the assumed macroscopic homogeneity and the short
this term by the COI’ relation function  range of correlations between the values of Se(r) at
g(p.p")=([8n(p)—(8n) 1[8n(p’)—(871)]) to obtain different locations. We now invoke the assumption of
isotropy, namely, that g(R) is spherically symmetric in

€(B+2) ) e d the original coordinates. Since (3.16) is carried out in the
feszfg(l),ﬂ )0::G(p,p')d°pdp’ . (3.14)  rescaled coordinates, the correlation function g has a
spheroidal symmetry, i.e., it is stretched or contracted in
the & direction, depending on the sign of 3. For =0 (the
linear case) the integral can be evaluated exactly by using
the spherical symmetry, leading to a result that depends
only on g (0).® We now show that (3.16) can also be eval-
uated in the present case. Consider the Fourier trans-
forms of the Green’s function, G,=1/|k|% and of g in

82

If the composite is macroscopically homogeneous, then g
depends only on the relative coordinate R. Assuming
further than g (R) decays to zero over a distance much
smaller than the size of the system, one can replace G
over most of the volume (except near the boundaries) by

Go(R)=1/(47|R]) . (3.15)  the rescaled coordinates
J
7= [g(ple*rdip=—I— [ g (R)expli(k,-x, +k,z/VEF1)]dR
\/[j’+1 0 t At z
1 JE—
.. v B+1 .
‘/B+1 Zolki,ky, yk,/VB ), (3.17)

where in the second form we transformed the integral back to the original coordinate system. The variables k, and x,,
are, respectively, the components of k and R that are orthogonal to z, and g is the spherically symmetric correlation
function in the original coordinates. Since g,(q) depends only on g2 one can use (3.17) to relate between the Fourier
transforms in the different coordinate systems

__B
p+1

I P
VB+I1

gk)= cos?0

) (3.18)

where 0 is the polar angle between k and the § axis. Substituting this expression and the Fourier transform of G, into
(3.16) one obtains

2
/3+ 2) GO q 4 .
8%, = e Rlathk) (3.19)
e (B+1) f f d f (277
The integration over R and q can be carried out to yield
(B+2)e, d9%
8%, = k . 3.20
€, B+l f(2 )dg( )cos26 ( )
Rewriting this integral using polar coordinates in k-space, we change the radial coordinate from k to K defined by
172
B 2
K= |1— () k ,
511 cos

and use (3.18) to substitute for g(k). The azimuthal angle is integrated trivially, leaving integrals over K and the polar
variable u =cosé

(B+2)e, ,,K - 2

@ 1 u
24 du (3.21)
2 o B K G p

8%, = —

where S, is the surface area of a unit hypersphere in d dimensions [S,; =21, 4, and 27%/2/T'(d /2) in 2, 3, and d dimen-
sions, respectively). The integral over K can be identified as g,(0). By changing variables to sinx =V B/(8+1)u, the
second integral becomes
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41 /2 e
2 B+1 f aresm B/(BH)(cosl_dx —cos*"¥)dx . (3.22)
B 0
Calculating this integral in three dimensions and inserting into (3.21) finally yields
172
€(B+2) 1 . B
82ee=——-—/3——g0(0) I—T/-Tg—arcsm B+1 . (3.23)

Note that this relation is valid for both >0 and —1 </ =<0 by analytic continuation, where the periodic function
changes to a hyperbolic function, while 8%, remains real. Recalling the definition of the correlation function g,(R), we
have

80(0)={[8n(r)— (89> ) =(*)—(n)?,

and summing the zero- and first-order contributions, one finds*

172
p+2

2¢y8
When —0 this reduces to the well-known expression for the linear case,

€.(B=0)=(e)—({e)*—(€)?) /3¢, .

((e2)—(e))+0((8¢)®) .

1— —lrarcsin (3.24)

vB

e.=(e)— B+1

3

It is interesting to note that the result (3.24) is independent of the local microgeometry and only depends on the variance
of the distribution of e(r). Note also that, while (3.4) holds generally, the result for the second order (3.23) is valid only
for an isotropic medium.

A procedure, similar to the above, can be carried out to find the bulk effective value of w=€" ¥[y=1/(B+1)] to
second order in dw(r). From (2.9) it is clear that for a neutral medium one can define a vector potential A such that
D=V X A. The basic relations that now define the mathematical problem are (analogously to the linear case!?):

E(r)=w(r)|D(r)|”"'D, (3.25)
VXE(r)=0, (3.26)
and
D‘(y+l)
wEZOTfa)(rHVX Alrtiady (3.27)

As in the former case, the second-order correction to w, can be shown to depend only on the first-order correction to
A. The procedure in this case is somewhat more involved due to two complications: (i) To transform the differential
equation for 6 A to the desired linear form it is not enough to rescale the coordinates, but rather, one also needs to re-
scale the magnitudes of the components of A. (ii) A technical complication arises from the tensorial nature of the cor-
responding Green’s function. Nevertheless, the calculation can be carried out explicitly (see the Appendix). The result-

ing expression that we find for w, is [in terms of B for comparison with (3.24)]

B+2
2BCL)O

0,={w)—

which agrees with the one found for €, to this order.
This agreement is not surprising, since by their
definitions €, =w, !/7.* Hence an expansion of the quan-
tities €, and w, !’?, in any variable, should agree to any
other. As in the previous case, w, can be bounded by its

volume average (see the discussion above)

0, <{0)=3pe 7. (3.29)
i

This is the result of the variational property of (3.27): w,

achieves its minimal value, under all possible vector fields

A that satisfy the appropriate boundary conditions, only

for the field that solves the appropriate differential equa-

[VB(B+ DarcsinVB/(B+1)—1]({0?) —{ 0 )?) +0((5w)?),

(3.28)

f

tion. Thus, replacing the minimizing displacement field
by a constant field D, yields the above result. The rhs of
(3.29) is realized for the real system shown in Fig. 1(b).
Therefore, this bound is optimal for any medium that fol-
lows the above power-law nonlinear relation. This result,
combined with the above bound on €, [see the discussion
following (3.4)], yields the following bounds on €,

(e ")) V7<e, <(€) . (3.30)
These bounds are optimal given that the volume fractions
of the components are the only information available
about their spatial distribution.
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IV. DISCUSSION AND CONCLUSIONS

In this paper we have discussed inhomogeneous,
strongly nonlinear materials. The nonlinear equation for
the scalar potential field (for nonlinear dielectrics) has
been studied and a method to reduce it into a set of linear
equations of the Poisson type, has been developed. Our
method describes an operative procedure to solve itera-
tively for the scalar potential field, without having to
cope directly with the nonlinear equation. The strongly
nonlinear problem is reduced to a set of linear equations
that are much easier to solve than the original problem.
This procedure is formally applicable to any nonlinear
dielectric whose local relation between D and E has the
form D=¢(r)f(E?)E. The advantage of this method lies
in the fact that there exists a large body of knowledge
with regard to the solution of equations of the Poisson’s
type, e.g., conformal mapping, Green’s functions, and
also many numerical methods. We have used the method
of the Green’s function to calculate the bulk effective
dielectric constant €, to second order in the spread of
values of 8¢, assuming that the medium is isotropic and
macroscopically homogeneous. The result is found to be
independent of the detailed microgeometry, as in the
linear case under similar assumptions.® Thus our calcula-
tion extends the classic result for linear composites.>%°
When the local fluctuations in the dielectric constant are
narrowly distributed [namely, 8e(r) << {e) ], one can use
this result to estimate the bulk dielectric constant with
good accuracy. The higher-order corrections to €, have
been cast in terms of integral expressions in the rescaled
coordinates, with each order depending only on correc-
tions of lower order to the local potential ®. However,
since even in the linear problem these expressions are
very difficult to evaluate, the practical usefulness of this
reduction for n =23 may be limited. The problem lies in
the need to know n-point correlation functions within the
medium for increasingly large values of n, which is usual-
ly very difficult. Nevertheless, it should be noted that
this difficulty does not stem from the nonlinearity of the
medium but rather from its geometrical structure and is
not very different from the difficulties encountered in
linear dielectrics.

Although the above results have been obtained for
dielectric systems, they apply to other problems, such as
heat conductivity, electric conductivity, nonlinear mag-
netic behavior, etc. All these systems satisfy two equa-
tions of the type (1.1) and (2.9). While for the electric
field E we treated in the text a scalar potential, due to
VXE=0, one can analogously consider a vector poten-
tial field A whose curl is the displacement field D, invert
relation (1.1) to the form E(D), write VXw(V X A)=0,
and solve for A (see the Appendix). The resulting bulk
effective value of w, agrees with €, in each order of 8e, so
that solving for A constitutes an alternative procedure
for finding the effective bulk behavior.
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APPENDIX: THE CALCULATION OF o,
TO SECOND ORDER IN THE FLUCTUATIONS

The nonlinear relation between D and E can be written
in the form

E(r)=o(r)|D(r)|" " 'D(r), o(r)=[e(r)]™" (A1)

where ¥y =1/(B+1). This relation is complemented by
VXE(r)=0. (A2)

The set of these two equations now replaces (1.1) and
(2.9) and, hence, one expects to be able to apply a similar
procedure for o, as for €,. From (2.9) one can see that
D(r) is derivable from a vector potential

D(r)=VX A(r) . (A3)

We expand E(r) in terms of Sw=w(r)—w, and the
corrections 8”"D(r) to the uniform field D, which would
exist in the homogeneous medium w, Requiring that
(A2) is satisfied term by term, one obtains the following
equation for the first variation of D(r)

(y —D[(V8D,)XZ]+VX8D(r)=—[V(8a(r)/wy)] X% .
(A4)

Rescaling only the coordinates, as done in Sec. II, i.e.,
x—x, y—y, and z—{=V'yz is now insufficient for
transforming (A2) into a convenient form. We also need
to rescale the field 8 A by defining a new vector potential.

B=(84,,84,,84,/V7). (A5)
Incorporating these transformations into (A4) now yields

VX [VXB(r)]=V(8a(r)8)/(yw,) (A6)
and

8D,=[VXB(r)]; . (A7)

Note that the rescaling of § 4, does not affect (A7), since
8D, depends only on 8 4, and 8 4,. The solution of (A6)
for B can be formulated in terms of a tensorial Green’s
function § that satisfies

VX(VX8)—k29=—K2%%p—p")T

(§=0 on the boundaries) , (AS8)

where J is the unit tensor. The Greens’s function
relevant to our problem is obtained by taking the limits
k—0 and K —1 at the end of the calculation.!! Apply-
ing a Fourier transformation to both sides of (A8), one
can solve for the Fourier transform of &, #(q), to find

_ K_2 k 280b — 9.9
- k2 k2_q2
where 7, is the ab component of the tensor F and 8, is

the Kronecker’s & function. Transforming back to coor-
dinate space one obtains

Fap(q) , (A9)

e klp—p'l

4mlp—p'l

aZ

K?
—_— +
ab 9p,9p,

k2

o= k28 (A10)
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Thus the formal solution for B is

B(r)=;—1a:—fg(p,p')'{V’X[Sw(p’)/_(,:']]ddp (A11)
0

where the integration is taken in the rescaled coordinates.
Letting K—1 and k—O0, the surviving part of the
Green’s function in (A11) is

1
4mlp—p'|
Integrating (A11) by parts, discarding the surface term,
and using the symmetry of &, we find

Sap= (A12)

B(r)=y%f[8w(p')-<8w)]V’[Q(p,p')f’]ddp
0

(A13)

where the average (8w ) has been inserted for later con-
venience and contributes nothing to the integral due to
the vanishing of ¢ on the boundary.

Next, let us define the bulk effective value of w, via the
energy density

=—fa(

As for €,, consider a variation 8w(r) and apply the &
operator to both sides of (A 14) to obtain

+1
VX Al 4
:—fS (r) dir=(w)—aw, .
The term within the integrand, that contains the first
variation of |V X A|?*1, vanishes as a consequence of the

variational property of (3.27). The second-order correc-
tion to w, is

82we=—ll-/-f8w8

IVx A(r)
0

1
d . (A14)

(A15)

0

lvx Al |7

dr |
D, ’

or, after some simplifications and transformation to the
rescaled coordinates,

82we+-‘}//:;;—:/fddp[Bm(p)—(a))][VXSA(r)]g (A16)

The insertion of (8w) into the integrand contributes
nothing due to the boundary conditions on 8 A. Using
(A5) and (A13) to substitute for 6 A in (A16), we get

50, ——LlVfddpfddp'[(&o(p)—(a)))
Y (1))

X8w(p')—(w)]
X[V X (€403, 9005 »

(A17)

J

52we =

ya)V

fd3 Jd*ROU—ud)Fo{ k2 [1+(y —Du?][}

7385

where, for brevity, we have adopted the convection of
summation over repeated indices, and where €;;, =1, —1,
and O if i,j, and k are cyclic, anticyclic, or when two of
them are equal, respectively. Next we replace the term in
the square brackets by its average, the correlation func-
tion

F(p,p ) =([80(p)—(8w)][dw(p’)—8w)]) . (A18)
The conditions that permit this are the same as those jus-
tifying the analogous procedure in the case of €,, namely,
the volume of integration must be larger than the micro-
geometric correlation length and the medium must be
macroscopically homogeneous.

Due to the macroscopic homogeneity, f is a function
only of the relative coordinate R. Under the conditions
stated above, and far from the boundaries, the exact
Green’s function may be replaced by the one in (A12)
(which corresponds to an infinite volume). With this
(A17) becomes

+1 ,
Bzwe——;/—sz/—z;;;fddpfddp SR B G N €gey ) 5

(A19)

where the summation is over b,c =x,y. To make further
progress we consider the Fourier transforms #,,(q) and
f(k) of §,,(R) and f(R), respectively. The correlation
function in the original system f, depends on |R| alone.
It follows that its Fourier transform

Fok)= [e™Rf(R)R ,

is a function only of |k|. Calculating the transform in the
rescaled coordinates, one finds

F) =Y [ foRexplik,x +k,y+V7yk,z)1d%
(A20)

and hence

F)=Vyfoflk} 1+ (y —1)cos?0]l} , (A21)
with 0 being the polar angle between k and the { axis.
The Fourier transform of the Green’s function, given in

(A9), can be used to yield

g:+q;}

lg?|

_ 2
=1—u”,

Aee Fop ()= u=q./lql . (A22)

Now it is possible to rewrite (A19) in three dimensions as

d’ diq

—i(k+q)-R
2m)? @27)? T

e (A23)
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The integration over R, p, and q can be carried out im-
mediately, and the remaining integral over k can be
simplified in polar coordinates by changing the radial
variable to K =[1+(y —1)u?]'/%k. This yields

+1 5 4rK*
8w, = — L KNTT2 gk
O T DegVy J 7ol Ripe

1 (1—u?)
X du .
f—l [1+(y—Du?P”?
The integral over K can be identified as f,(R=0), while
the integral over u can be carried out explicitly to yield in
the final analysis

(A24)

arcsin(V'1—y
Vy(l—y)

14y fol0)

2, =
8w, FE——

—1 (A25)

The generalization of this result to higher dimensions d is
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straightforward and only requires the replacement of the

power 3 in the last integral over u, in (A24), by d /2.
Finally this second-order contribution can be added to

the zero and first orders to yield an expression for w, that

is correct to second order in dw,

— (o) — B+2 | B+1

w, =

T | VB

arcsin[V 3/(B+1)]—1

X{8w?) /wy+0((8w)?) (A26)

where we have substituted y=1/(S+1) for comparison
with the result for €,. This comparison indeed shows
that when w, is expanded in terms of 8¢ rather than Sw,
the two expressions are in agreement to O((8¢)?). This is
expected, of course (see the discussion in Sec. III con-
cerning the compatibility of the definitions of w, and €,).
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