Entropy-mediated structure-permeability relations in skeletal porous materials
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The aim of this paper is to formulate a new framework for characterisation of porous materials and for obtaining first-principles structure-permeability relations. The formaslism is based on a representation of the porous medium in skeletal form and involves several steps. First, the skeleton is characterised by a fabric tensor that describes the local pore structure. Second, the fabric tensor is used to construct a configurational entropy of the porous medium, based on Edwards’ compactivity concept. Both the fabric tensor and the entropic analysis are initially illustrated in two-dimensions and are then extended to three-dimensional systems. Third, the local pore-scale permeability is expressed in terms of the structure of the skeleton and the degrees of freedom that comprise the phase space of configurational states. Fourth, the pore-scale permeability is calculated as an expectation value over the partition function. 

We propose that the same procedure can be used to find the conductivity of the porous medium when it is filled with brine water. This makes it possible to derive a theoretical relation between these two transport properties. 

I. Introduction
Flow in porous media is critical in many industries, for example hydrocarbon extraction and groundwater flow (in particular remediation of pollution or safe storage of nuclear waste) but also to many other industrial processes (e.g. catalysis, fluidized beds, filtration, food and drugs processing and so on). The understanding of flow behaviour can be broken into several issues, none of which is currently resolved satisfactorily. One issue concerns a useful characterisation of the porous medium. The ultimate aim of any characterisation method in this context is to isolate a small number of descriptors that can be used in the analysis of flow properties without the need to go into a detailed description of the entire porous microstructure. Another issue is the determination of the permeability to flow given those descriptors. While the two problems are technically separate, they are clearly related. A characterisation scheme would only be good if it provides descriptors that are useful for a particular analysis and if it is useful for the study of permeability in a wide range of microstructures.

In most applications standard empirical constitutive relations (Darcy's Law) are used to relate flow rates to applied pressures and the fluid content of the porous medium. However, these relations are not derived explicitly from the structure on the porescale and take no account of it. The problem then is that it is impossible to predict how the flow processes may change for different pore structures. By fully understanding the impact of microstructure on flow we expect to be able to determine the relationships between the various macroscopic transport properties. Potentially, this has enormous industrial importance in that permeability can be difficult to measure directly in situ (for example down a well in an oil field). However, other macroscopic characteristics, such as electrical conductivity and acoustic impedance, similarly depend on the microstructure, and indirect measurements of microstructure, through electrical conductivity for example, are relatively straightforward. To date, methods to relate the microstructure to macroscopic transport properties are phenomenological in that there is no systematic way that starts from a microstructural description and derives the permeability or the electric conductivity. It is well accepted in the field that the current phenomenological and empirical methods need to be replaced by a more predictive science. In particular, the ability to relate these two measurements from first principles would lead to a significant leap in technology. 

In this paper we resolve the characterisation problem explicitly and outline the use of the proposed characterisation method for the analysis of the permeability. We also outline how the procedure may be used to determine the conductivity of brine water-saturated media, which will give us a theoretical relation between the permeability and this conductivity – a problem that is of essential significance these days.

II. Topological characterisation of planar porous media

In our approach we separate between the topology of the structure and the geometry. The characterisation method described in the following has been developed to describe the former in porous materials. The second tier – a geometric characterisation – builds on the present methods and will be presented elsewhere. The topology is the property of the skeleton alone. We emphasise that the topological characterisation should be decoupled from the problem of pinpointing the skeleton of a porous medium and in the following we do not discuss the latter issue. Before we consider three-dimensional materials it is instructive to gain insight from two-dimensional systems. For clarity, we discuss porous media made by a collection of grains stuck together and the grains will be presumed to be touching at points, termed contact points. This simplification does not pose a serious restriction and the extension to contact surfaces is possible (Blumenfeld 2005). 

The skeleton of a two-dimensional such medium the is defined as follows. Identify the contact points between neighbouring grains, say v and grain v’, 
[image: image1.wmf]. Around every grain connect the contact points by vectors that circulate around the grain in the clockwise direction, as shown in figure 1. By definition, these vectors also make polygons in the plane, which we shall call cells. Around the cells the vectors circulate in the anticlockwise direction. Each such vector can be uniquely identified by the grain v and the cell c between which it lies, 
[image: image2.wmf]. The result of this construction is a planar cellular structure of directed edges. 

For each grain define the centroid of its 
[image: image3.wmf] contact points
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.
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Let us define also the centroids of cells as
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where 
[image: image6.wmf] stands for a summation over the contact points around cell c and 
[image: image7.wmf] is the total number of such contacts. We now extend a vector from the centroid of a grain to the centroid of one of its neighbour cells,
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Next, we consider the tensor constructed from outer product


[image: image9.wmf].








(4) 
The antisymmetric part of this tensor gives the area of the quadrilateral whose diagonals are these two vectors (shown shaded in figure 1). The area of the quadrilateral, 
[image: image10.wmf], can be found through
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where 
[image: image12.wmf]. For every
[image: image13.wmf] there is such a quadrilateral and these quadrilaterals tile the plane perfectly. Moreover, it is possible to associate a unique area with every grain by summing over the 
[image: image14.wmf] quadrilaterals around it, 
[image: image15.wmf]. The entire volume of the system is
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where the last sum is over all quadrilaterals without partitioning into grains and cells. 

The volume function 
[image: image17.wmf] plays a central role in the entropic formulation of the problem, as we shall see later on.
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Fig. 1. Part of the skeleton of a two-dimensional assembly of grains. Grain v is shown, surrounded by three cells. The contact points of the grain with its neighbours are connected around it, making a polygon of 
[image: image19.wmf] sides. The edges of the polygon are assigned directions such that they circulate clockwise around the grain. Consequently, across the structure these are vectors that circulate in the anticlockwise direction around cells. Each edge-vector is indexed uniquely 
[image: image20.wmf]. A vector 
[image: image21.wmf]extends from the centroid of grain v to the centroid of cell c. The vectors 
[image: image22.wmf] and 
[image: image23.wmf] are the diagonals of a quadrilateral (shown shaded) whose area is 
[image: image24.wmf].

III. Topological characterisation of three-dimensional porous media

The skeletons of three-dimensional porous media form so-called open-cell cellular structures. Namely, they can be described as frameworks of infinitely thin struts that extend between nearest neighbour vertices. Since the topology of a porous medium is the same as that of its skeleton, our first task here is to define the skeleton. For clarity, but without loss of generality, we assume again that the grains touch at contact points and that every grain touches exactly four other grains (
[image: image25.wmf]).

Following the insight gained from planar systems let us start with the following construction. Around every grain connect its contacts points by edges, as shown in figure 2. The result is a tetrahedron that is the skeletal representative of the grain. The connected tetrahedra form a framework, which we regard as the skeleton of the solid phase. We wish to use this construction to partition the three-dimensional space as we have done in two dimensions. To this end we define the following quantities. A tetrahedron around grain v has four triangular faces, each facing a particular cell c. We first assign directions to the edges of such a triangles, such that they circulate in the clockwise direction when viewed from the inside of the tetrahedron. In terms of these vectors the directed area of the triangle is 
[image: image26.wmf], where 
[image: image27.wmf]and 
[image: image28.wmf] are any two of the three edges of the triangle shown in figure 2 and this pseudo-vector points away from the grain and toward the cell. The centroid of the triangle is defined as 
[image: image29.wmf] and between the centroid of the tetrahedron (defined as the mean position vectors of the grain contact points) and the centroid of cell c (defined similarly) we extend a vector 
[image: image30.wmf] (see figure 2). 
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Fig. 2. Part of the skeleton of the skeletal framework representing a three-dimensional assembly of grains. The four contact points around grain v are connected to form a tetrahedron. The mean position vector of the contact points is the centroid of the grain, termed vertex v. The four triangular faces of the tetrahedron open to four pores also known as cells. For example, the triangle facing cell c has an area 
[image: image32.wmf], where 
[image: image33.wmf] and 
[image: image34.wmf] are the vectorised edges of the triangle which circulate in the triangle in the clockwise direction when viewed from the vertex. The vector 
[image: image35.wmf] extends from vertex v to the centroid of cell c. 

Next, let us suppose that we can view the surface of cell c from a point inside it. From this vantage point the surface is composed of a network of triangles - each corresponding to a face of a different tetrahedron - and a collection of polygons that the triangles enclose. On this surface every edge is shared between a triangle and a polygon – for example, edge 
[image: image36] in figure 3a lies between triangle 
[image: image37] and polygon p. From the two ends of edge 
[image: image38.wmf] let us extend two lines to the centroid of the polygon p, 
[image: image39], and two lines to the centroid of the triangle 
[image: image40.wmf]. Since the polygon and the triangle lie in planes that are tilted to one another these four lines make a skewed quadtrilateral (shaded blue in figure 3e). From the corners of the quadrilateral extend now four lines to the centroid of cell c, making a pyramid-resembling hexahedron whose base is the skewed quadrilateral (see figure 3c). Similarly, extend four lines from these corners to the vertex, making an oppositely-pointing hexahedron whose base is the other side of the quadrilateral. The union of these two hexahedra is the octahedron shown in figure 3f. 

[image: image41.png]



Fig 3. The partition of space by quadrons. a) the skeletal framework of tetrahedra; b) the two ends of the edge vector 
[image: image42.wmf] are connected to the centroid of the polygon p that it borders; c) the end points of the same edge are connected to the centroid of the triangular face that it circulates; d) the resulting skewed quadrilateral (in blue) are connected to the vertex; f) the corners are also connected to the centroid of the cell, making an octahedron which we term Quadron.

There are three such octahedra around triangle 
[image: image43] and these join together smoothly to give a stellated dodecahedron that extends between the cell and the vertex centroids. Constructing the equivalent dodecahedra that extend from the vertex into the other three cells around it, it can be shown that they combine to make a stellated icositetrahedron that fully encloses the vertex. The icositetrahedron consists of the twelve basic octahedra and its volume can be associated uniquely with the vertex, 
[image: image44.wmf], where q runs over the twelve octahedra around the vertex. 

Thus, the three dimensional porous space can be partitioned uniquely. Quite interestingly, the basic building blocks of the partition are not the icositetrahedra that represent ‘grain volumes’ but rather the octahedra. There is a direct equivalence between the octahedra and the building blocks of two-dimensional systems - the quadrilaterals. The existence of such basic elements is significant for the formulation of a statistical mechanical characterisation method, as we shall see below. Consequently, these were given a special name – quadrons. 

At this stage we note that, while in the two-dimensional case the volume of a quadron was extracted from a certain geometric tensor, in three dimensions we have not yet defined such a tensor. This is our next task. The volume of a quadron can be indexed by the vertex v, the cell c and the polygonal face p on the surface of the cell, namely, 
[image: image45]. Let us define the vector 
[image: image46], which extends from the centroid of the triangle to the centroid of its neighbouring polygon, p. We also define the pseudo-vector 
[image: image47], using the vectors shown in figure 3. We now note that the outer product 
[image: image48.wmf] is a rotated version of the two-dimensional tensor 
[image: image49] and that the trace of this tensor is exactly 
[image: image50]. This makes it possible to express the volume of the octahedron 
[image: image51] as the trace of the fabric tensor 
[image: image52] or 
[image: image53]. 

IV. Entropic characterisation of two- and three-dimensional porous media

The above discussion established a topological characterisation around every grain by the tensor 
[image: image54]. To construct the tensor, however, requires a detailed knowledge of the raw structure at every point on the grain scale, a task that is hopeless for any macroscopic piece of porous rock. Rather, a statistical approach is called for. We shall focus here on an approach that has been proposed recently for disordered cellular structures (Blumenfeld and Edwards 2003, 2006), following an earlier development for granular materials (Edwards and Oakeshott 1989). The basic idea is that every structural configuration of the granular system can be regarded as a ‘state’ and the collection of all possible configurations (termed the ensemble of states) can be used as a basis for the definition of a configurational entropy. The usefulness of this approach is that it allows us to employ the powerful analytical tools of statistical mechanics. The justification for using such a formalism is based on the observation that many cellular structures have steady-state statistics on large scales [refs + comment on scaling with time]. For example, one expects that the distribution of any structural variable in one cubic meter of a sandstone rock would be the same as in another cubic meter of a sandstone rock taken from the same area, barring physical phenomena that take place on larger scales (e.g. large-scale fractures). A detailed discussion of the justification for using statistical mechanical methods is outside the scope of this presentation and we shall not attempt it here. Rather, we proceed to present a brief review of the formalism.

The key idea is the formulation of a partition function,


[image: image55] ,
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where {q} is the entire set of relevant degrees of freedom in the system, 
[image: image56] is a probability density that is analogous to the density of states in thermal physics, 
[image: image57] is a volume function that is the analogue of a Hamiltonian in thermal systems, X is the compactivity that replaces the concept of temperature in conventional systems, and l  is a constant coefficient that is the analogue of the Boltzmann constant and gives the quantity lX dimensions of volume. The quantity 
[image: image58], which is the equivalent of the free energy, has been termed the free porosity (Blumenfeld and Edwards 2003). It is for the purpose of this formalism that exact volume functions have been constructed in two and in three dimensions,
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and


[image: image60.wmf] ,
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where N is the total number of grains. It is evident that all the variables appearing in these relations are not independent. One of us has shown recently that in two dimensions, of all the variables 
[image: image61] and 
[image: image62] (of which there are at least 12N altogether), only 
[image: image63.wmf] are independent, where z is the mean number of contacts per grain in the planar structure []. Interestingly, this is exactly the number of quadrons in the structure, an observation that is quite useful when computing certain expectation values, as will be seen below. In three dimensions a similar analysis has shown that the number of independent degrees of freedom 
[image: image64.wmf] can be bounded between 12N/5 and 5N/2 (Blumenfeld and Edwards 2006).  Two intriguing observations can be made about this result. First, 
[image: image65.wmf] in three dimensions is even smaller than in two dimensions, suggesting that the ‘phase space’ of the latter has a higher dimensionality in granular systems. Second, unlike in planar structures, there are significantly fewer independent degrees of freedom than there are quadrons. This eliminates the convenience of using the quadrons for spanning the phase space, except as an approximation. Third, note that we are free to choose any linear combination of 
[image: image66.wmf] variables to span the phase space in three dimensions. The considerable difference between the number of quadrons (12N) and 
[image: image67.wmf]  (<2.5N) suggests that if we choose a subset of 
[image: image68.wmf] quadrons that is uniformly distributed spatially across the system then these would be quite sparse with a number density that can be bounded very narrowly,


[image: image69]
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 This is significant because it suggests that the sparse 
[image: image70.wmf] quadrons should be very weakly correlated, if at all.

The topological-structural properties of the granular structure can now be expressed as expectation values over the partition function Z,


[image: image71]
,
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where A is an arbitrary quantity that depends on the quadron volumes and the angular brackets stand for averaging over all the members of the ensemble of configurations. In (11) the partition function has been written in terms of the volumes of the independent quadrons and 
[image: image72] is the density of quadron volumes. For example, the mean volume per grain, also known as the mean porosity, is


[image: image73],
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where 
[image: image74] and the coefficient a is the number of quadrons comprising one grain on average -  z in two dimensions and 12 in three. The fluctuations of the porosities associated with grains can be found similarly


[image: image75]
.
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Assuming that the degrees of freedom are uncorrelated and that they all have the same probability density, 
[image: image76.wmf], we can simplify the partition function significantly using for the overall probability density 
[image: image77].

There are several ways to determine the compactivity, X, of a given macroscopic sample of rock. One example is by measuring the porosity and porosity fluctuations in a number of smaller regions in the sample and using the following relation


[image: image78]
.
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Another method is to measure the distribution of a small sample of pores, using the above characterisation, and the mean porosity across the medium. The compactivity is then found using a fit to equations (11) and (12).

It should be commented that there is a range of structural quantities A that cannot be written in terms of quadron volumes. The determination of the expectation value of such a quantity is then  by first expressing the partition function in terms of the more basic variables – the 
[image: image79] and then following the same procedure as in eq. (11), only in the phase space of these degrees of freedom. An important example of such a variable is the distribution of sizes of the skeletal throats, which we shall not analyse here. We only point out that the expectation values of all the moments of this distribution can be calculated, given the distribution of the independent 
[image: image80]. From the knowledge of the moments it is then possible to derive the entire throat size distribution to any required accuracy. Once this distribution is known it is a small step to calculate from it the distribution of the permeability in an equivalent network whose bonds have the same section area distribution. We can then carry out a similar calculation for the electrical conductivity of the same network. This gives a direct relation, albeit only on the level of the topology of the structure, between the permeability and the conductivity through their common dependence on the partition function. The extension of this result to a derivation of the relation between these two transport properties in real systems, where struts have finite thicknesses, is straightforward and will be discussed elsewhere. 
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