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Abstract. We introduce and study a da Vinci fluid, a fluid whose dissipation is dominated by solid friction.
We analyse the flow rheology of a discrete model and then coarse-grain it to the continuum. We find that
the model gives rise to behaviour that is characteristic of dense granular fluids. In particular, it leads
to plug flow. We analyse the nucleation mechanism of plugs and their development. We find that plug
boundaries generically expand and we calculate the growth rate of plug regions. In systems whose internal
effective dynamic and static friction coefficients are relatively uniform we find that the linear size of plug
regions grows as (time)'/3. The suitability of the model to granular materials is discussed.

1 Introduction

The flow of non-cohesive granular matter has focused
much attention due to both a broad technological rele-
vance and fundamental scientific challenges. The impor-
tance of modeling granular flow cannot be overempha-
sized —particulate transport is important to dry chem-
icals, pharmaceutical granules, agricultural grains, cere-
als, pebble beds in nuclear reactor and more. Of par-
ticular interest is flow in hoppers and silos, commonly
used for storage and discharge. Dense particulate flows are
also relevant to many natural phenomena: avalanches of
rocks and snow, cratering, quicksand dynamics and dune
locomotion.

Flow of dilute systems is straightforward to model, us-
ing pair inelastic collision theories [1-4]. In many cases,
however, the flow is dense and even the concept of collision
is not well-defined when grains are in prolonged contact.
As a result, simple flow models are inadequate, mainly due
to unrealistic drag and dissipation terms. Still, the demand
to resolve practical problems has given rise to a plethora of
models that are either empirical or based on conventional
fluid physics. Slow flow of dense granular matter is con-
ventionally modelled with plasticity-based theories [5-7].
Liquid-like dense flows, however, are much more difficult
to model [8]. A good review of the understanding of such
flow has been given in [9]. The specific solutions required
for practical engineering applications have given rise to
models of increasing complexity to accommodate a range
of physical mechanisms (e.g. [10-18]). This helps fitting
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experimental measurements, but it makes models less flex-
ible and difficult to extract generic insight from.

Here we focus on a minimal model —a fluid governed
solely by solid friction. Solid friction plays a particularly
important role in the flow of dense non-cohesive particu-
lates —it provides a mechanism to dissipate mechanical
energy as grains rub against neighbors, and to store it in
intra-granular degrees of freedom. In our model, volume
elements follow Newton’s second law, but they interact
via the da Vinci-Amontons-Coulomb law of solid friction.
The effective friction coefficients describing that interac-
tion originate from the inter-granular friction coefficients,
as can be derived theoretically [19]. We call this a da Vinci
fluid (dVF), after da Vinci’s pioneering work on solid fric-
tion [20], which preceded the more known works of Amon-
tons [21] and Coulomb [22]. Models resembling ours have
been proposed by Schaffer [23] and Jop et al. [24], based
on experimental observation of simple flows. In contrast
to those, our model is based on the idea that the pro-
longed contact between frictional grains in dense systems
should result in effective friction constants between vol-
ume elements [25]. Moreover, our formulation resolves a
key problem in those models, whose equations are not de-
fined within plug regions. Consequently, our model cap-
tures correctly one of the most important aspects of flow
of dense granular materials: the formation and growth of
plug flows. We present exact solutions under simplified
conditions that provide insight into the effect of this mech-
anism on the macroscopic rheology.

In the following we first formulate the flow equations
for laminar flow in a model discrete system. We then solve
the equations for several simple cases and show that they
lead to formation and growth of plugs. Next, we use the
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Fig. 1. The evolution of an initially monotonic velocity profile
(dashed line), shown at successive times from top to bottom.
A PR nucleates at the right boundary and expands into the
fluid.

gained insight to obtain continuum equations. Finally, we
derive the dynamics of growth of simple plug regions from
the continuum equations.

2 Discrete description

We construct our model for laminar flow of dense granular
material by dividing the system into layers, each of many
grains, perpendicular to the direction of flow. Individual
grains across the common interface between adjacent lay-
ers interact via normal and friction contact forces. These
give rise to mean normal forces and tangential friction
forces between the layers. The ratio of net friction force
to net normal force defines an effective friction coefficient
that is proportional to the corresponding inter-granular
friction coefficient. The constant of proportionality can be
derived [19] and it depends on the geometry of contacts
between grains on the boundary between adjacent layers.
For simplicity, we assume here, following experimental and
numerical observations [26,24], that the threshold for rel-
ative motion between layers occurs once the ratio of the
friction force to the normal force exceeds an effective static
friction coefficient ps. Once relative motion has been es-
tablished, the friction force is velocity-independent [22]
and is proportional to the normal force with a dynamic
friction coefficient pg < ps.

We start the discrete analysis by considering the sim-
plest possible gravitational flow, illustrated in fig. 1. It
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comprises a set of N parallel layers of width d, all mov-
ing in the z-direction. The layers are confined between
two boundary plates and oriented in the direction of grav-
ity. A pressure P is applied to the boundary plates, as
shown in fig. 1. Effective dynamic and static friction coef-
ficients are assumed both between the layers and between
the outermost layers and the boundary plates. The focus
on planar layers is mainly for convenience —the follow-
ing analysis is general and applies to any uni-directional
flow, such as parallel streamlines in a pipe and avalanches
down slopes. For clarity, we assume that the layers have
a uniform mass density p, but, again, the model can be
extended to non-uniform density, in which case the local
effective friction coefficient, due to friction between grains
in adjacent layers, depends on the local density (making it
position dependent). As the main aim of this paper is to in-
troduce the model and present its usefulness, we consider
only simple cases, where the initial density is uniform and
remains so throughout the dynamics. More general cases,
where the friction coefficient depends on the inertial num-
ber I [24,27,28], will be addressed in a later report [29].

When moving relative to the boundaries, the layers
motion in the z-direction is given by

Pn+in — /’LdP7 if n= 1,

pdi}n = pdg + Prn—1n +pn+1,n7 if 1<n< N7 (1)
Pn—1,n — pal, if n=N,

where n = 1,2,..., N indexes the layers and p,,11,, is the

friction force per unit area that layer n+ 1 applies on layer
n. Note that the above equations are correct whenever
g > usP/(pd), regardless of the relative velocity between
the boundary and the outer layers. By Newton’s third law,
this force is equal and opposite to the force that layer n
applies on layer n + 1, ppi1n = —Prnii-

The velocity of the centre of mass of all the layers
is vom = Y, vn/N and, by summing the equations, it
is straightforward to verify that the acceleration of the
centre of mass is

: 2pqP
prm— —_ 2
vcM g pL ) ( )
where L = Nd is the distance between the stationary

boundary plates. The friction forces on the right-hand side
of egs. (1) follow the da Vinci-Amontons-Coulomb law and
depend non-analytically on the relative velocity between
neighboring layers.

Noting the significance of plug flow, we wish to deter-
mine the consistency of such solutions with the threshold
nature of the friction forces. We therefore consider first
an initial state, where all the velocities and accelerations
of the layers are equal, given by eq. (2). Calculating the
friction force per unit area between layers n and n+ 1, we
find

2n
Pnt+1,n = ﬂdP <1 - N) ) (3)

decreasing linearly with distance from the left boundary.
From (3), all the inter-layer friction force densities are
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Fig. 2. The evolution of a velocity profile containing a local
maximum. The velocity profile (dashed line) is shown at succes-
sive times from top to bottom. The fastest layer is slowed down
by friction with both its neighbors, which eventually catch up
with it. A plug then nucleates and expands outwards of the
maximum point.

below the threshold value us P, i.e. the layers cannot slide
relative to one another and they move together. Thus,
there exists a uniform plug flow solution where all the
layers fall as one rigid body.

Next, let every layer move initially relative to both its
neighbors, with an overall velocity profile that increases
from left to right,

) <l << <ol (4)

Since layer 2 falls faster, it applies on layer 1 a friction force
(per unit area) pa1 = pqP in the z-direction. This force is
cancelled by the friction force on 1 from the left boundary
and 1 accelerates at a; = g. Similarly, the friction forces
on every layer n < N cancel out, leading to all these layers
accelerating initially at g. Thus, for a short time ¢, before
any threshold is reached, the velocity profile for 1 < n < N
remains unchanged, v, 11 — v, = constant.

This solution, however, is unstable. Layer N experi-
ences decelerating friction forces from both layer N — 1
and the right boundary (fig. 2) and its acceleration is
g—2pqP/pd < g. Therefore, layer N — 1 gains on layer N
and, after a time

Pd(U?v - U?\ffl)

2yaP (5)

T =

their velocities match at v(1) = vQ_; 4+ g71. At that mo-
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ment py y—1 drops below the threshold and the two layers
move as one, forming a nuclear plug. From 7y on, eqs. (1)
need to be solved afresh with a new velocity profile

0 .

vg(Tl){Ug+ng’ ?f niN, (6)
vy_q +gm, if n=DN.
The acceleration of the nuclear plug is g — uqaP/pd < g.
Layer N — 2 then starts gaining on the plug, catching up
with it at 7o = pd(vq_; — v%_5)/paP. At that moment
layer N — 2 joins the plug and the three layers move as
one. This involves instantaneous readjustment of the fric-
tion forces between the layers within the plug: py v-_1
becomes —pqP/3 and pn_1,n—_2 drops below the thresh-
old to uqP/3. The process of velocity matching and read-
justment of inter-layer friction forces in the growing plug
region (PR) continues from right to left until it reaches
layer 1 (see fig. 1). From then on, the entire system is
a plug, moving as one rigid body. Thus, the flow indeed

converges to the first case discussed above.
The time interval, 7,,, between the moments that lay-

ers N —m and N —m + 1 join the plug is

_ pd(v?\ffm - U?\/'fm«kl)
T =M 2yaP . (7)

The acceleration of the right m-layer plug during this in-
terval is g — 2uqP/mpd. The time it takes the system to
converge to a global plug is then

N N
T = Z Tm = pd Z (UO - ’U?) (8)
m:1 2,U/dP = m )

after which it accelerates at g — 2uqP/pL. The evolution
of the velocity profile is shown in fig. 1.

As a next case, consider an initial arbitrary non-
monotonic velocity profile v0, containing no PR. Layers
whose velocities are neither a local maximum nor a local
minimum of v move faster than one neighbor and slower
than the other. Hence, the friction forces on them cancel
out and they accelerate at g. However, when the veloc-
ity of the layer is a local maximum of the velocity profile
(e.g. fig. 2), both its neighbors slow it down and it acceler-
ates only at g — 2uqP/pd. As soon as one of the neighbors
catches up, a plug nucleates. Since the nuclear plug also
moves faster than both its neighbors, its acceleration is be-
low g and eventually one of the neighbors catches up and
joins the plug. Similarly, when a layer’s velocity is a local
minimum, its neighbors act to accelerate it at g+2uq P/ pd
and exactly the opposite scenario takes place: the nuclear
plug accelerates more than its neighbors and eventually
catches up with one of them. Both these cases lead to
plug formation and growth. Thus, the catch-up dynamics
described above generate plugs at all the extrema of v¥.

When two expanding PRs meet they merge and con-
tinue as one plug. The merging dynamics is interesting
in its own right and, although it is downstream from this
discussion, we comment on it below. The expansion and
merging of PRs continues until the entire system is one
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Fig. 3. A system of N identical layers tilted to the direction
of gravity g.

plug. It follows that the global plug flow discussed above
is a stable fixed-point solution of a whole family of laminar
flows.

The coalescence of PRs is far from simple. When the
boundaries of two PRs collide, they are at different veloc-
ities and accelerations and the velocity matching between
them is accompanied by readjustments of inter-layer forces
within each PR. This gives rise to interesting dynamics
that depend on intra-plug stress relaxation rates, which
are not described by our equations. However, by assum-
ing that the readjustment of forces is instantaneous, we
can compute the intra-plug inter-layer forces and work
out explicitly the catch-up dynamics all the way to global
plug flow.

The above convergence to a uniform plug state is not
necessarily the rule. For example, consider another sys-
tem: a flow in an inclined pipe, tilted at an angle o to the
horizon (fig. 3). The fluid is supported by a bottom plate,
whose friction with the fluid is the same as the internal
friction, and is confined by a top frictionless plate. Signif-
icantly, now the inter-layer pressure varies with position,
since upper layers weigh down on lower ones, leading to
varying inter-layer slippage thresholds.

It is straightforward to show that, if all layers are ini-
tially at rest under a uniform boundary pressure Py, n top
layers slide down as one, while the bottom N — n layers
remain at rest. The value of n depends on the angle o and
on the friction coefficient g, it is the smallest integer that
satisfies the relation

n > #s P . ()
~ gpd(cosa — pgsin ar)

The n-layer PR does not expand to span the entire sys-
tem because, once it starts sliding, the friction coefficient
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between it and the (n + 1)-th stationary layer drops to
1q, reducing the tangential force. This demonstrates that
the dVF equations accommodate stable flow solutions of
localized PRs. The analysis can be extended to arbitrary
initial velocity profiles. In particular, it is possible to iden-
tify the thresholds for inter-layer relative motion and the
times that layers join the PR. These give rise to rich pat-
terns of sliding regions, which will be explored elsewhere.

3 Continuum description

We now use the insight from discrete systems to formulate
continuum flow equations. We first rewrite the discrete
equations to take into account the non-differentiable form
of the friction forces. Then we make the equations contin-
uous by tending the layers’ widths to zero, making them
into streamlines. The dynamics depend non-analytically
on velocity differences between layers and the equation of
motion for layer n is

P 1 Un4+1 — Un
s (2

—a Up — Un—1
d Pn,n—1

Hd . Un+1 — Un
2ep..1S ntl ™ Yn
" od { o lgn( d >

—P,_; Slgl’l (Un _dvn—l >:| 7

where we define, respectively, Sign(u) = —1,0,1 when
u<0,u=0,u>0and a(u) =0,1 when u # 0, u = 0.
The expression in the first square brackets on the right
hand side describes sub-threshold friction forces when lay-
ers move together. The second square brackets contain
the contribution from friction forces between neighbor lay-
ers at different velocities. Sub-threshold friction forces per
unit area satisfy p,y1.n +Dn—1,n = Fpr, where Fpg is the
total force per unit area on the PR boundary.

To extend eq. (10) to the continuum, we define a con-
tinuous coordinate, = nd, running normal to the bound-
aries from left to right (fig. 1) and take the limits d — 0
and N — oo, such that Nd = L. For generality, we let
P = P(z) be a function of position, making it possible
to describe flows more general than gravitational. In this
limit we obtain

o =0 e [P (@)

5
Ha O o (20
+ ) on {P(w) Sign <3x)] ,

where p(z) is the friction force per unit area between
streamlines. As in discrete systems, this flow is unstable
to nucleation and growth of PRs. At the boundaries of
PRs, dv/0x changes discontinuously from zero to a finite
value. Equation (11) is the continuum flow equation of a
dVF of uniform density p.

(10)

(11)
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To illustrate one of the uses of eq. (11), we next ob-
tain from it the initial growth rate of plugs. Consider a
fluid, containing at least one PR, flowing in the z-direction
under gravity g with a velocity profile v,(z) at ¢ = 0.
Consider one of the PRs, of width w between z; and
r, = x; + w, moving at velocity ug. The left and right
streamlines just outside the PR move, say, slower than the
plug and, for concreteness, we choose their initial veloci-
ties as v; < v, < ug. The streamlines apply a decelerating
force of 2uqP on the PR and, after a short time ¢, the
velocities of the PR and its boundary streamlines are

'Ur(t) = UT‘(O) + gt,

2uqP
u(t) = uo + (g _ ZHd ) t,
pw

v (t) = v (0) + gt. (12)

The right streamline catches up with the plug first after
7. = pwlug — v,-(0)]/2uqP. Dividing both sides of this
expression by d and taking the continuum limit d — 0,
the growth of the PR to the right follows

de,  2uaP (Ov\7
dt  pw \Oz ’

Zr

(13)

where (0v/0z),,. is the gradient of the z-directed velocity
at the right boundary. Combined with a similar growth to
the left, we find that the plug broadens at a rate

ox ) . ox ), |’
Suppose the initial flow velocity profile is analytic with a

local maximum at x = 0, v(z,t = 0) = ug — Ca? + ... .
According to (14), this gives birth to a PR that broad-

ens as
2ta Pt 1/3
w = .
3pC
This broadening as /% is generic, occurring in different

geometries and higher dimensions, as will be reported else-
where [25].

dw _
dt

Zﬂdp
pw

(14)

dw _ 2paP
dt — pCw?

(15)

4 Conclusion and discussion

To conclude, we have presented a minimal description of
flow of dense granular matter, modelled as a da Vinci
fluid. The dVF is governed by Newton’s equations with
normal contact forces and drag due to solid friction be-
tween volume elements. These forces are the respective
coarse-grained sums of the normal and friction forces be-
tween grains belonging to adjacent volume elements in
the fluid. Consequently, accelerations cannot be ignored,
as in many existing models. We first analysed the behav-
ior of discrete systems, showing that the threshold nature
of the da Vinci-Amontons-Coulomb friction law gives rise
to rich dynamics. Most notably, we have shown that the
flow is unstable to nucleation of plug regions, wherein the
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fluid flows at a uniform (position-independent) velocity.
We have found that, under some conditions, once a PR
has nucleated, it may expand. We have identified a growth
mechanism, which we call catch-up dynamics, and illus-
trated the dynamics explicitly in several examples that
provide clear physical insight.

We have then extended the formulation to the contin-
uum, where the discrete layers become streamlines whose
drag is governed by the da Vinci-Amontons-Coulomb fric-
tion. We find that, under appropriate conditions PRs ex-
pand, in which case their linear size grows proportionally
to t'/3. In these cases PRs expand and coalesce until the
entire fluid flows as one plug. We have also shown that,
under some boundary loading, PRs may remain finite. It
is interesting that dense clusters forming in granular gases
also grow as t1/3 [30-32].

The normal hysteresis associated with the different val-
ues of ps and pg, hardly plays a role in the model. This
is because the value of p, is only implicit as a thresh-
old in the p;;’s in eq. (10). The hysteresis would come
into play when intra-plug layers start moving relative to
one another, but there is no mechanism to initiate inter-
nal motion. Forces are applied to plugs only through their
boundaries, via dynamic friction.

The model has several advantages. First, it is mini-
mal, involving only inertia and solid friction, and hence
it is straightforward to interpret physically. In particular,
the model alleviates the need to resort to an energy equa-
tion since the energy (and the dissipation), for this type
of fluid, can be computed directly from the equations. In-
deed, the irrelevance of an energy equation in linear Cou-
ette flow of granular materials has been discussed recently
by Kumaran [33]. Second, it gives rise generically to plug
flow, a phenomenon often observed in flow of dense gran-
ular fluids, via a tractable physical mechanism. Third, the
simplicity of the model makes it useful for gaining insight
into the formation and development of plug regions, and
in particular into their peculiar rate of expansion. Fourth,
our treatment has the significant advantage that the ve-
locity field is well-defined even inside PRs and across their
boundaries. This is in contrast to other, seemingly similar,
models that attempted to include drag based on an effec-
tive friction coefficient throughout the liquid (e.g. [24]).

It should be noted that, in contrast to many exist-
ing models, which assume a steady-state flow of constant
velocity profile, there is no such assumption in the dVF
model. For example, under the pure gravitational flow
shown in figs. 1 and 2, the steady state consists of a plug
flow moving at a constant acceleration. This is a direct
consequence of considering only solid friction drag and
ignoring other effects, e.g. drag due to air. This also sets
the range of validity of the model because, as local velocity
gradients increase under the acceleration, the mean num-
ber of contacts per grain at any moment decreases. Once
this value drops below one, the material can no longer
be considered dense and the flow crosses over to what is
known as the inertial regime. Thus, this model, while ap-
plying strictly to dense flows, also shows how the fluid can
exit the dense regime.
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To keep the model minimal, we have assumed uniform
friction coefficients throughout the material. This simpli-
fication gives good insight into the phenomenon of plug
formation and growth, but it prevents capturing some
phenomena. Notably, it does not predict shear banding
and boundary pressures that vary with boundary shear
rates (e.g. as in gravitational chute flows, where, given an
inertial number I [27], the pressure varies as the square
of the shear rate). Realistically, the local effective fric-
tion coefficient may be a function of the local density,
as well as of microscopic grain scale details. For exam-
ple, the local value of p can be suppressed considerably
by rolling of grains, inducing shear banding in the model.
Rollability of grains depends on: local shear, grain aspect
ratios and local connectivity, which is related to the local
density. Therefore, a straightforward extension to model
shear banding and shear-rate-dependent boundary pres-
sure would be by letting the local friction vary with the
local density. Another straightforward way to include non-
uniform dynamic friction is by following phenomenological
expressions suggested for 114 [24,28]. These extensions will
be reported elsewhere [29].
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