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Abstract
Isostaticity theory (IT) provides stress field equations for marginally rigid packs of non-cohesive particles, interacting through 
hard-core forces. Its main advantage over strain-based theories is by closing the stress equations with stress–structure, rather 
than stress–strain, relations, which enables modelling the stress chains, often observed in experiments and simulations. The 
usefulness of IT has been argued to extend beyond its applicability at marginal rigidity. It has been shown to be derivable from 
first principles in two-dimensions, with the structure quantified by a fabric tensor that couples to the stress field. However, 
upscaling IT to the continuum is done currently empirically by postulating convenient closure equations. The problem is that 
a volume average of the fabric tensor vanishes in the continuum limit, trivialising the closure equation. This poses an unusual 
upscaling problem, necessitating a new approach. Such an approach is developed here, resolving the problem for planar 
granular assemblies. The new method is developed initially for idealised ‘unfrustrated’ packs by coarse-graining first to the 
two-grain scale, after which a conventional coarse-graining can be used. It is then extended to general realistic systems, by 
introducing an intermediate ‘de-frustration’ procedure. The applicability of the method is illustrated with a tractable example.

Keywords Stress theory · Granular matter · Upscaling · Stress–structure relations · De-frustration transformation

1  About Bob

Bob Behringer was one of the main players in the field of 
granular matter and contributed more than many to better 
understanding of these systems. When I first saw the beau-
tiful images of force chains, produced by his experiments 
on photo-elastic particles [1–5], I remember thinking that 
this person had just tore a window in the wall of mystery 
surrounding the poorly understood granular systems. By 
devising a way to visualise force propagation paths in such 
media he made it possible to peer inside them and start to 
sort out the confusion surrounding them at the time. Indeed, 

his experiments gave rise to a new generation of predictive 
modelling.

And then I met the man and realised that there was 
much more to Bob than his experiments. Bob impressed 
me immensely well beyond his science. The combination of 
his levelheadedness and his love of life was inspiring. Very 
notable was his default ‘cool, calm and collected’ mode, 
with a pen between his teeth and a glint of humour in his 
eye. But that mode would last only until I described to him 
a potential new idea. The cool mode would disappear and 
he would react with the enthusiasm of a child. Indeed, his 
boundless curiosity made it easy to get him excited with 
good science. Beyond the science there were his abundant 
generosity and kindness. It was a pleasure to discuss with 
him anything, from fundamental science, through music and 
swimming to the meaning of life in general. Each such dis-
cussion felt like embarking on a voyage of discovery and 
almost always resulted in some more dots being connected 
and a better understanding emerging. Often, our discussions 
would meander into bantering, at which he was very good. It 
was very easy to forget how important his contribution had 
been to the development of the field and simply love him 
as a human being. Bob’s death left a large gap in the field, 
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as well as a hole in the hearts of many. The field is not the 
same without him.

2 Introduction

Granular materials (GMs) form an important and ubiq-
uitous state of matter, playing a major role in our eve-
ryday life. They support and transmit stress significantly 
differently than conventional solids, often in the form of 
non-uniform stress chains [6–14]. Having a fundamental 
theory to predict the stress that develops in such media 
under given boundary loads is extremely significant for 
a wide range of applications in fields beyond science and 
engineering. All continuum static stress theories are based 
on balance conditions of force and torque:

where � is the stress tensor, �T its transpose, and � includes 
all external and body forces on the medium. These equations 
must be supplemented by one constitutive relation in two 
dimensions (three in three dimensions). In elasticity theory, 
this is achieved by imposing compatibility conditions on 
the strain and relating the strain to the stress. This proce-
dure results in elliptic equations whose solutions cannot be 
the observed stress chains. Alternative approaches, such as 
Critical State theory, popular in the engineering literature, 
rely on closures that relate the stress components when the 
medium is on the ‘yield surface’, which is a surface in the 
space spanned by the stress components. This approach 
gives a hyperbolic set of equations, yielding stress chains, 
or slip lines, but it is phenomenological in nature and lacks 
predictive power [15].

At marginal rigidity, GMs are minimally connected, 
possessing the lowest possible mean number of force-
carrying contacts per particle, at which the structure is at 
mechanical equilibrium. In this marginally rigid, or iso-
static, state, the intergranular forces in the assembly can 
be determined from balance conditions alone. This makes 
the strain, and hence stress–strain relations, redundant as 
input at the grain level. Since the continuum stress field is 
a coarse-grained representation of the spatial distribution 
of those forces then continuum strain-based constitutive 
properties are also redundant. For this reason, such theo-
ries, which includes elasticity, are inadequate for GMs.

Isostaticity stress theory has been developed to resolve 
the problem for ideally statically determinate, or isostatic, 
media [16–24]. Although most GMs are not precisely iso-
static, on the verge of yielding they are sufficiently close to 
this state, containing isostatic regions, whose sizes depend 
on the proximity to marginal rigidity [21]. This makes 

(1)
� ⋅ � + �ext = 0

� = �
T ,

isostaticity theory relevant to general GMs. Real systems 
can be generated close to marginal rigidity, e.g. by care-
ful preparation or by generating low density shear bands 
[22, 23].

The irrelevance of strain for marginally rigid systems 
leaves structure as the only usable constitutive property for 
closing the stress equations and isostaticity theory closes 
the equations by one stress–structure relation in 2D (three in 
3D). The most general form of the relation in 2D is [16–19]

where � is a symmetric fabric tensor, quantifying the local 
structure in a specific way [25]. Isostaticity theory is the 
name given to the stress field equations (1) and (2). These 
equations are hyperbolic, resulting in solutions of stress 
chains extending along characteristic paths. While friction 
does not seem to appear explicitly in the equations, it affects 
the dynamics, that give rise to the static structure and, there-
fore, the statistics of the fabric tensor Q. Following empirical 
[16, 17] and mean field [19] proposals for the form of � , a 
first-principle theory derived it directly from the local grain-
scale microstructure [20]. Specifically, around a grain g

where � =

(
0 1

−1 0

)
 is a �∕2-rotation matrix and

with the sum running over the loops c that surround grain g. 
The quadrilateral, whose diagonals are the vectors �cg and 
�cg (see Fig. 1), is called ‘quadron’, and it is the structure’s 
most basic volume element [27]. For brevity, I index the 

(2)
∑
ij

qij�ij ≡ � ∶ � = 0,

(3)�g =
1

2
�
−1

⋅

[
�g +

(
�g

)T]
⋅ �,

(4)�g =
∑
c

�cg =
∑
c

�cg ⊗ �cg,

r

R

gq

q

tq sq

Fig. 1  The loop sides of the quadron q, whose diagonals are �q 
and �q and whose area is Aq (shaded), are the vectors �q and �q . 
The symmetric tensor �g can be written in terms of these vectors, 
�g =

1

2

∑
q

�
�q ⊗ �q − �q ⊗ �q

�
 , with q being all the quadrons belong-

ing to grain g. Note that �q = −�q� if q′ is adjacent to q. Therefore, the 
sum over �q inside a loop c vanishes identically irrespective of the 
loop shape
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quadrons in the following cg by q rather than cg. This struc-
tural tensor, which has a 3D equivalent [28], is useful for 
most GMs except when the grains are extremely non-convex 
[29]. The quadrons surrounding grain g are said to belong to 
it and their number equals its number of contacts with neigh-
bouring grains. This description allows us both to quantify 
the disordered local structure unambiguously and close the 
stress equations with a stress–structure coupling tensor �.

It can be readily verified that Tr{�g} =
∑

q∈g

Tr{�q} =
∑

q∈g �q ⋅ �q , where q are the sum is over the 
quadrons belonging to grain g. Therefore, Tr{�g} quantifies 
the deviation of the quadrons around grain g from a kite 
form and, consequently, this is a measure of the net rotation 
of grain g relative to a global mean, which must be zero 
[20]. In other words, this quantity describes a local rotational 
fluctuation. It is constructive to consider

where �q and �q are shown in Fig. 1. The antisymmetric part 
of �q can be written as A{�q} = Aq� , with Aq =

1

2
|�q × �q| 

being the area of the quadron q. The area associated with 
grain g is Ag =

∑
q Aq = A{�g} and the total area of the 

system is Asys =
∑

g Ag.

3  The problem

The first-principles derivation and, in particular, the ability 
to derive �g from local structural characteristics [20] were 
an important development, but a new problem emerged. The 
equations of a complete stress theory should have the same 
form when upscaled, which requires that �g can be coarse-
grained systematically to arbitrarily large length-scales. This 
is problematic because the volume-average of �g over any 
region of space vanishes except for contributions from the 
region’s boundary. This renders the closure relation (2) a 
useless trivial identity in the continuum limit. To see this, 
consider a region Γ , of boundary �Γ , area AΓ , and NΓ ∼ L2 
grains. We have �Γ = ⟨�g⟩Γ = �⟨�g⟩Γ�−1 = �Γ and the 
volume-average of � is

Let us partition the sum over neighbouring pairs in contact, 
g and g′ , surrounding loop c. These terms cancel in pairs 
inside the loop because �q∈c = −�q�∈c . It follows that the 
contribution of loops, fully enclosed within Γ , to the sum 
(6) vanishes—only that of the quadrons along the boundary 
�Γ survives because those are not cancelled by neighbour 
quadrons. The vanishing of this sum is independent of the 
structural geometry, topology and grain shapes. It follows 

(5)�g = ��g�
−1 =

∑
q

(
�q�q − �q�q

)
∕2,

(6)�Γ =
1

2AΓ

∑
q

(
�q ⊗ �q − �q ⊗ �q

)
.

that �Γ ∼ 1∕L → 0 as L increases, rendering (2) a trivial 
identity.

The method developed below consists of three steps. The 
first is by mapping the system into one with staggered order 
(SO), to be defined below. The second is coarse-graining the 
stress equations to the two-grain scale, with a fabric tensor 
that does not vanish identically to zero. The third step then 
proceeds as for any conventional coarse-graining method, by 
volume-averaging Q over increasingly large volumes until the 
desired continuum limit is reached.

4  The upscaling method

1. Packs with staggered order (SO)
The resolution of this problem is based on the observation 

that Eq. (2), which was developed for frictional systems, can 
be rewritten in terms of only half the degrees of freedom in 
systems possessing a SO. SO in granular packs means that 
grains can be labeled + and −, such that any + grain is in con-
tact only with − grains and vice versa. This is tantamount to 
the condition that each loop is surrounded by an even number 
of grains [20]. In such systems, the upscaling procedure is in 
the three steps detailed below: partitioning the assembly into 
pairs of + and − in contact; coarse-graining the constitutive 
equation to the two-grain scale by writing the stress equations 
for unit pairs in terms of half the degrees of freedom; upscaling 
the constitutive equation by conventional volume averaging.

The general force moment on grain g is Fg =
∑

h �gh × �gh , 
where h are the neighbours of g, �gh the force that grain h exerts 
on g, and �gh are the position vectors of the contacts between 
g and h. The local stress on grain g is then �g = Fg∕Ag . The 
mean and differential stresses of a +/− pair are, respectively, 
�m = (F+ + F−)∕Apair and �d = (F+ − F−)∕A± , where 
A± = A+ + A− is the area associated with the pair. Aver-
aged over a large region, Γ , ⟨�m⟩Γ converges to the tradi-
tional continuum stress field, with the local stress fluctuations 
⟨�d⟩Γ ∼ 1∕L → 0 , with L the the system linear size. We com-
bine the constitutive equations (3) for the pair, rearrange:

and average over Γ . The first equation becomes a trivial 
identity. The correlation between the two small quanti-
ties, ⟨�d

�
�+ +�−

�⟩Γ also decays with size, which leaves 
⟨(�+ −�−) ∶ �m⟩ = 0 , in which the subscript Γ was dropped 
for brevity. The averages of � and � decouple as Γ increases:

Since ⟨�+ +�−⟩ = 0 then ⟨�+⟩ = −⟨�−⟩ and we can sub-
stitute this into (8) to obtain the upscaled relation

(7)
(�+ +�−) ∶ �m + (�+ −�−) ∶ �d =0

(�+ −�−) ∶ �m + (�+ +�−) ∶ �d =0,

(8)⟨(�+ −�−) ∶ �m⟩ = ⟨�+ −�−⟩ ∶ ⟨�m⟩.
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This constitutive relation is a consistent coarse-grained 
version of the original one. Moreover, it has the significant 
advantage that the average of the constitutive quantity �+ 
does not vanish identically on coarse-graining like the origi-
nal equation. Thus, this resolves the coarse-graining problem 
in SO systems.

The method presented next aims to coarse-grain the fabric 
tensor in packings of frictional grains. Packings of ideally 
frictionless grains have been shown in [20] to be mappable 
naturally to systems of frictional grains that possess SO. 
This is done by first assuming that the grains are frictional 
and then introducing infinitesimally small ball bearings at 
the contact points. It has been shown that the resultant sys-
tem remains isostatic. Thus, for frictionless systems, Eq. (9) 
can be coarse-grained straightforwardly by volume averag-
ing and the following procedure is not required.
2. Extension to general GMs

In general GMs, there are almost always loops surrounded 
by odd numbers of grains (OL), which ‘frustrates’ the SO, as 
at least two same-sign grains must be in contact.

The extension of the above method to general systems is 
by renormalising the structure to lift the frustration. It is con-
venient to focus first on systems without 3-edge loops—the 
extension to include these will be described below. Consider 
a single OL, within a region of only even-edged loops, such 
as sketched in Fig. 2. Label the grains around it as + and 
− in the clockwise direction, alternatingly. The last grain, 
gf  , is in contact with the first one, g0 , and they are both −. 
Starting from a neighbour of g0 , which does not belong to 
the OL, label similarly the first shell of loops surrounding 

(9)⟨�+⟩ ∶ ⟨�m⟩ = 0. the OL. With this shell’s loops being even-edged, it must 
contain exactly one frustrated pair of grains and these, which 
is adjacent to the pair g0–gf  . Repeating this process shell by 
shell outwards, a continuous line of same-sign pairs ema-
nates from the single OL, as sketched in Fig. 2. This line 
extends to the system boundary. However, if the line is ‘inci-
dent’ on another OL, it ends, as sketched in Fig. 2.

This observation is the key to renormalising the structure 
for lifting the frustration. Isolating same-sign grain pairs into 
lines and regarding each such pair as a rigid super-grain, 
we recover a SO structure! The procedure is the following. 
Firstly, identify all the OLs in the network. Next, partition 
the OLs into nearest pairs, minimising the overall number of 
contacts between them. Thirdly, identify a ‘frustration’ line 
between each OL pair, using the above method and avoiding 
crossing of these lines. Finally, declare each frustrated pair 
of grains a super-grain and compute its fabric tensor, Q as 
the sum of the fabric tensors of its constituents. The result is 
a system of rigid objects, some the original grains and some 
the super-grains, possessing a SO. Finally, use the above 
coarse-graining procedure to upscale the constitutive rela-
tion to regions of required size, namely, containing sufficient 
numbers of loops each.

Although this renormalisation changes the local topology, 
it does not alter the forces on the original grains. Turning two 
grains into a super-grain eliminates the contact between them 
and consequently some quadrons, which are the descriptors 
and basic elements of the local structure. Since the structure 
tensor of the super-grain is the sum of those of its constituents, 
�± = �+ + �− , then the area associated with the super-grain 
is A±� = A{�±} =

(
A{�+} +A{�−}

)
=
(
A+ + A−

)
� , as 

expected. Another feature of the procedure concerns the phys-
ics of the stress field. Considering Eqs. (4), (6) and Fig. 3, note 
that the vectors � and � , which originally extended between the 
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+ −
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− +
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−

−
+
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g
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Fig. 2  The frustration around an OL surrounded by even-edged loops. 
Labelling the grains around it alternately by + and −, leaves two 
neighbouring ‘frustrated’ grains with the same sign ( g0 and gf  ). Start-
ing from a neighbour of g0 and labelling the next shell (thick lines), 
leaves another frustrated pair lying adjacent to the first one. Continu-
ing this procedure shell by shell around the original OL, results in 
a line of such frustrated grain pairs emanating from it. This line is 
capped when it is incident on another OL

(a) (b)

+

+ −
−

+

++

+

+ −
−

+

Fig. 3  The frustrated pair in a is joined into a super-grain, denoted by 
a dashed red line, in b. The area of the super-grain is the sum of the 
areas of its constituents, which is also the coefficient of the antisym-
metric part of the renormalised geometric tensor �pair . Since the 
renormalised fabric tensor � is the sum over the tensors of the frus-
trated grains, their common vectors � and � between the joined pair 
(thick black lines in a) are also eliminated in b, disposing of the effect 
of the contact point in the structural description. The stress field is 
unaffected by this because these vectors cancelled out anyway in the 
original structure. Therefore, the joining procedure is self-consistent 
(color figure online)



The unusual problem of upscaling isostaticity theory for granular matter  

1 3

Page 5 of 7    38 

eliminated contact point and the centres of the loops flanking 
it, cancel out and they do not play any role in the renormalised 
tensor �± that results from the pair of the eliminated grains. 
Since the stress–structure coupling can be mediated only by 
grain contacts, the removal of the effect of the eliminated 
contact point by the local renormalisation is significant - it 
underpins the self-consistency of the procedure with its local 
structural and geometrical interpretation.

3-edge loops are special because joining any two of their 
grains annihilates the loop altogether. Such loops are very 
sparse in isostatic frictional systems, whose mean number 
of loop edges is 6 (the result of Euler’s theorem). These 
loops are pre-processed before the upscaling to the two-
grain scale, by merging the loop’s three grains into an initial 
super-grain. In the rare occasion that clusters of such 3-edge 
loops occur the entire cluster is merged into a super-grain. 
The de-frustrastion procedure is then applied to the resulting 
structure, which is devoid of 3-edge loops.

Once the 3-edge loops have been eliminated, the proce-
dure described in the paper works for any concentration of 
odd loops and, in particular, when the entire system is made 
of them. Such systems are highly unlikely to occur but, if 
they do, the upscaling procedure would result in the two 
grains, shared by every pair of neighbouring loops, being 
joined into a super-grain. This loses an edge for each cell, 
making them all even-edged, and reduces the number of 
loops to a half.
Example

To illustrate the method, consider first the granular pack 
shown in Fig. 4. The underlying structure is ordered on a 
honeycomb-like lattice, possessing SO. A local defect has 
been introduced by expanding one loop into an octagon, 
generating two pentagonal neighbours. The latter are OLs, 
introducing two sources of local frustration. The structure 
tensor � is purely antisymmetric in the regular hexagonal 
regions and �g vanishes. The frustration defects, highlighted 
by ellipses in the figure, introduce a local finite fluctuation in 
the fabric tensor and we wish to calculate the renormalised 
effect on the constitutive relation after renormalising to SO. 
Carrying out the above joining procedure on the frustrated 
grains, and summing over the resulting � tensors of the posi-
tive grains, we obtain the renormalised contribution:

Substituting into (9), the local constitutive relation around 
the defect is then

(10)�defect = −

⎛⎜⎜⎝

3

10

4
√
3

5
4
√
3

5

3

2

⎞⎟⎟⎠
.

(11)�xx + 5�yy +
16√
3
�xy = 0.

Generally, adding a uniformly random distribution of defects 
at area density � to a defect-free isostatic system, of an ini-
tial fabric tensor �0 , the coarse-grained fabric tensor of the 
effective medium is �em = (1 − �)�0 + ��defect . Using this 
constitutive relation together with (11) provides the stress 
equations at any desired length scale.

It is useful to illustrate the issue with a system that is partly 
uniform and partly with defects. Suppose the uniform medium 
is the above honeycomb, deformed slightly to perturb the lat-
tice’s symmetry, which trivialises the diagonal of �0 . Placing 
particles in contact on the vertices makes a Kagome structure. 
The deformation can be chosen to yield a range of fabric ten-

sors of the form �0 = Ka2
(

1 − � −(1 + �)

−(1 + �) 1 − �

)
 , with K a 

constant and 𝜉 < 1 [30]. For simplicity, I choose a deformation 
that yields � = 1∕4 . In the uniform medium, this gives rise to 
characteristics oriented at gradients �0

1
= 1∕3 and �0

2
= 3 (A 

and B in Fig. 5). Let this medium fill the entire half-plane 
−∞ ≤ y ≤ ∞ and 0 ≤ x ≤ ∞ . Now fill the the region 
x0 ≤ x ≤ ∞ with the aforementioned defects at density 
� = 10% , the fabric tensor in this region is

The resulting characteristics in this region are at gradients 
�em
1

≈ 0.17 and �em
2

≈ 26.70.

(12)�em(x > x0) = Cte

�
1 9 + 2.56

√
3

9 + 2.56
√
3 4.44

�
.

+ +

++ +

+

+ +

+ +

+ +

+

Fig. 4  A granular Kagome structure, based on a honeycomb lattice, is 
ordered except for a defect consisting of an octagonal loop flanked by 
two pentagonal loops, which introduce two frustrated grain pairs. The 
coarse-graining is over all the positive grains, but only those near the 
defect with irregular areas (shown shaded) have a finite fabric tensor
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Applying at the origin the stress �0 =
(
sxx 0

0 0

)
 gives rise 

to stresses along the left two characteristic paths, A and B: 

�A =
−3sxx

8

(
1 3

3 9

)
 and �B =

27sxx

8

(
1 1∕3

1∕3 1∕9

)
 . These chains 

reach the boundary of the defect-filled region at points 
(x0, x0∕3) and (x0, 3x0) , whereupon they act as boundary 
loads for the medium in x > x0 . From each of these load 
sources emanates a pair of stress chains at gradients �em

1
 and 

�em
2

 . The stresses along these paths is calculated using the 
method outlined in [24]. Figure 5 illustrates �xx∕sxx along the 
chains C, D, E, F: −1.06275,−8.88825, 0.56475, 88.99425 , 
respectively.

5  Conclusion

In summary, the problem of upscaling the stress equations 
of isostatic GMs is unique in that the volume average of 
the constitutive fabric tensor, which couples to the stress to 
close the field equations, vanishes in the large-scale limit. 
This has led to imposing phenomenological or empirical 
fabric tensors. Particular examples of such closures are the 
yield conditions, such as Mohr–Coulomb, in plasticity-based 
theories. This problem is resolved here from first-principles 
by developing a specialised upscaling method. The method 
is based on the observation that the constitutive relation can 
be written in terms of only half the degrees of freedom in 
ideally unfrustrated granular packs, whose volume average 
over Q need not vanish identically in the continuum limit. 

Using this observation, the closure equation is first upscaled 
to the two-grain scale in such systems and from then on 
coarse-grained to the continuum conventionally by volume 
averaging.

Since most granular structures are frustrated, a ‘de-frus-
tration’ method has been developed to transform any pla-
nar granular structure into an unfrustrated one. The method 
is based on joining frustrated grain pairs to lift the local 
frustration. The procedure leads to a renormalisation of the 
local fabric tensor and an example of such a calculation for 
a simple system including two defects in an otherwise hon-
eycomb-like structure has been illustrated. It should be noted 
that the ‘de-frustrated’ structure need not be, and in most 
cases is not, marginally rigid. However, this does not pose a 
difficulty because the original physical system is marginally 
rigid and therefore isostaticity theory applies regardless of 
the mathematical manipulation of the structure.

The unusual aspects of this upscaling procedure are a 
direct consequence of the vanishing of a straightforward 
volume averaging of the constitutive quantity Q, a feature 
that is not common in any other coarse-graining procedure. 
This difficulty necessitates an upscaling in several stages: 
(1) de-frustrating the system into one with SO; (2) upscal-
ing to the two-grain scale by writing the closure equation 
for pairs of grains and using half the degrees of freedom; (3) 
conventional volume averaging of the renormalised Q over 
increasing lengthscales.

It would be interesting to test the method on systems in 
which both the structure and the forces can be visualised, 
such as the many sample systems produced in the lab of 
Bob Behringer [1–5]. Moreover, the problem is still out-
standing for three-dimensional systems, which have not been 
discussed here. Work on extension of the method to such 
systems is ongoing.

Compliance with ethical standards 

 Conflict of interest I declare that I have no conflict of interest.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http://creat iveco mmons .org/licen ses/by/4.0/.

A

B

F

E

D

C

x

y

x0

D
ef
ec
t−
fr
ee

Defect−filled

Fig. 5  The stress chain paths (gradients are not to scale for bet-
ter illustration) in the defect-free ( x < x0 ) and defect-filled ( x ≥ x0 ) 
regions. The blue (red) represent negative (positive) values of �xx . 
The darker the shade and the wider the line the higher the stress mag-
nitude (color figure online)

http://creativecommons.org/licenses/by/4.0/


The unusual problem of upscaling isostaticity theory for granular matter  

1 3

Page 7 of 7    38 

References

 1. Geng, J., et al.: Footprints in sand: the response of a granular 
material to local perturbations. Phys. Rev. Lett. 87, 035506 (2001)

 2. Majumdar, T.S., Behringer, R.P.: Contact force measurements and 
stress-induced anisotropy in granular materials. Nature 435, 1079 
(2005)

 3. Majmudar, T.S., Sperl, M., Luding, S., Behringer, R.P.: Jamming 
transition in granular systems. Phys. Rev. Lett. 98, 058001 (2007)

 4. Zhang, J., Majmudar, T.S., Behringer, R.P.: Force chains in a two-
dimensional granular pure shear experiment. Chaos 18, 041107 
(2008)

 5. Zhang, J., Majmudar, T.S., Tordesillas, A., Behringer, R.P.: Sta-
tistical properties of a 2D granular material subjected to cyclic 
shear. Granul. Matter 12, 159 (2010)

 6. Hummel, F.H., Finnan, E.J.: The distribution of pressure on sur-
face supporting a mass of granular material. Proc. Inst. Civ. Eng. 
212, 369 (1921)

 7. Jotaki, T., Moriyama, R.: On the bottom pressure distribution of 
the bulk material piled with the angle of repose. J. Soc. Powder 
Technol. Jpn. 16, 184 (1979)

 8. Smid, J., Novosad, J.: Pressure distribution under heaped bulk 
solids. In: Proceedings of 1981 Powtech Conference, Industrial 
Chemical Engineering Symposium, vol. 63, D3/V/1 (1981)

 9. Luding, S.: Stress distribution in static two-dimensional granular 
model media in the absence of friction. Phys. Rev. E 55, 4720 
(1997)

 10. Vanel, L., Howell, D.W., Clark, D., Behringer, R.P., Clement, 
E.: Memories in sand: experimental tests of construction history 
on stress distributions under sandpiles. Phys. Rev. E 60, R5040 
(1999)

 11. Silbert, L.E., Grest, G.S., Landry, J.W.: Statistics of the contact 
network in frictional and frictionless granular packings. Phys. Rev. 
E 66, 061303 (2002)

 12. Snoeijer, J.H., Vlugt, T.J.H., van Hecke, M., van Saarloos, W.: 
Force network ensemble: a new approach to static granular matter. 
Phys. Rev. Lett. 92, 054302 (2004)

 13. Atman, A.P.F., Brunet, P., Geng, J., Reydellet, G., Claudin, P., 
Behringer, R.P., Clement, E.: From the stress response function 
(back) to the sand pile “dip”. Eur. Phys. J. E 17, 93 (2005)

 14. Ostojic, S., Somfai, E., Nienhuis, B.: Scale invariance and univer-
sality of force networks in static granular matter. Nature 439, 828 
(2006)

 15. Schofield, A.: Disturbed Soil Properties and Geotechnical Design. 
Thomas Telford Publishing, London (2009)

 16. Wittmer, J.P., Claudin, P., Cates, M.E., Bouchaud, J.-P.: An expla-
nation for the central stress minimum in sand piles. Nature 382, 
336 (1996)

 17. Wittmer, J.P., Cates, M.E., Claudin, P.: Stress propagation and 
arching in static sandpiles. J. Phys. I (France) 7, 39 (1997)

 18. Cates, M.E., Wittmer, J.P., Bouchaud, J.-P., Claudin, P.: Jamming, 
force chains, and fragile matter. Phys. Rev. Lett. 81, 1841 (1998)

 19. Edwards, S.F., Grinev, D.V.: Statistical mechanics of stress trans-
mission in disordered granular arrays. Phys. Rev. Lett. 82, 5397 
(1999)

 20. Ball, R.C., Blumenfeld, R.: Stress field in granular systems: loop 
forces and potential formulation. Phys. Rev. Lett. 88, 115505 
(2002)

 21. Blumenfeld, R.: Stresses in granular systems and emergence of 
force chains. Phys. Rev. Lett. 36, 2399 (2004)

 22. Ball, R.C., Blumenfeld, R.: From plasticity to a renormalisation 
group. Philos. Trans. R. Soc. Lond. 361, 731 (2003)

 23. Blumenfeld, R., Edwards, S.F., Ball, R.C.: Granular matter and the 
marginally rigid state. J. Phys. Condens. Matter 17, S2481 (2005)

 24. Gerritsen, M., Kreiss, G., Blumenfeld, R.: Stress chain solutions 
in two-dimensional isostatic granular systems: fabric-dependent 
paths, leakage and branching. Phys. Rev. Lett. 101, 098001 (2008)

 25. Note that several other descriptors in the literature are named ‘fab-
ric tensor’, but those are mostly useful for strain-based theories, 
with the conditions for being useful discussed in [26]. Since iso-
staticity theory is not strain-based, these conditions do not apply, 
while Q is useful by construction, being based on the contact net-
work alone

 26. Li, X.S., Dafalias, Y.F.: Dissipation consistent fabric tensor defini-
tion from DEM to continuum for granular media. J. Mech. Phys. 
Solids 78, 141 (2015)

 27. Blumenfeld, R., Edwards, S.F.: Granular entropy: explicit calcula-
tions for planar assemblies. Phys. Rev. Lett. 90, 114303 (2003)

 28. Blumenfeld, R., Edwards, S.F.: Geometric partition functions of 
cellular systems: explicit calculation of the entropy in two and 
three dimensions. Eur. Phys. J. E 19, 23 (2006)

 29. Blumenfeld, R., Edwards, S.F.: Reply to comment on “Granular 
entropy: explicit calculations for planar assemblies”. Phy. Rev. 
Lett. 99, 089402 (2007)

 30. Handley, W., Blumenfeld, R.: Fabric tensor statistics of perturbed 
Kagome structures. Cavendish Laboratory internal report (2011)

Publisher’s Note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.


	The unusual problem of upscaling isostaticity theory for granular matter
	Abstract
	1 About Bob
	2 Introduction
	3 The problem
	4 The upscaling method
	5 Conclusion
	References




