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ABSTRACT: Recent experiments on the pullout of single polymer chains have revealed a complex behavior
of the force fluctuations. This paper analyzes the pullout process theoretically and numerically and shows
that these fluctuations can be made to shed light on disentanglement dynamics. To facilitate the analysis,
I first derive the probability density function of the threshold force needed to disentangle one entanglement
point. This function is found to be dominated by large fluctuations, which bears directly on the observed
statistics. The average and variance of the force are calculated, and a numerical investigation of the
dynamics is carried out to check the results. Finally, applications to deformations in several macroscopic
systems are discussed.

1. Introduction

Recent measurements of force fluctuations during
pullout of single polymer chains have brought to light
some fundamental issues concerning their dynamics.1
In a typical such experiment, an AFM cantilever beam
is brought close to a polymeric surface and the tip bonds
chemically to a chain. Bonding to only one chain is
achieved by a careful choice of the system conditions
and the tip material. The cantilever beam then retreats,
and the force on it is measured. Traditionally, chain
dynamics are presumed to consist of sliding along an
effective tubelike channel formed by entanglements with
other chains.2 This picture, combined with equilibrium-
based arguments, makes it possible to derive many
results and, in particular, the typical friction force that
the chain needs to overcome in the process. Pulling a
single chain, however, involves nonequilibrium dynam-
ics and therefore cannot be understood within this
traditional picture. Moreover, the assumption that the
disentanglement force has a typical value dominates
many studies,3 yet this assumption becomes increas-
ingly questionable as the temperature is reduced toward
the glass transition and cannot be applied safely to
single chains. Thus, the distribution of disentanglement
forces is a crucial issue for the single chain pulling (SCP)
dynamics, as well as for more general issues. Pullout of
polymer chains at temperatures around, and below, the
glass transition is at the heart of many macroscopic
processes. Examples are failures of polymer/polymer
and polymer/matrix interfaces, as occurring in rubber
and fiber enhanced polymers, welded polymers, and
debonding of adhesives. Thus, understanding the SCP
dynamics is an essential first step to understanding
these issues.

Here, I model this process and derive the distribution
of the force fluctuation measured under constant pulling
rate. Although SCP by an AFM cantilever beam does
not correspond exactly to this condition, it has the
advantage of both being convenient to analyze and a
reasonable approximation. The base of the cantilever
beam is moved at a constant speed, and the deflection
of the beam due to the tugging at the tip is used to
measure the force. It follows that the tip that pulls the
chain does not move at a constant speed nor is it pulling

at a constant force. Thus, the boundary conditions in
the actual experiment consist of neither constant strain
nor constant stress rates. Nevertheless, because the
stiffness of most beams is on the order of 1-10 Nm-1

and the forces involved in the pullout process are at
most on the order of nanonewtons, then a constant
strain rate is a plausible approximation. A numerical
study that takes into account the true boundary condi-
tions within the present model is under construction.
For clarity, the model is first described and analyzed
at zero temperature. An essential ingredient in the
present theory is the distribution of the threshold forces
of disentanglement, and I therefore derive it here using
a simple microscopic argument. The probability density
function (PDF) of the threshold forces is found to have
no local maximum but rather to decay algebraically.
This result has significant implications on models that
use a typical value or a Gaussian distribution for the
disentanglement forces, and these implications are
briefly discussed here. A more thorough discussion with
suggestions for experimental testing of this finding will
be given elsewhere.4 A numerical simulation of the
process is constructed to test the calculations, and the
agreement is excellent. Next, the model is extended to
include effects of temperature. It is argued that there
are two main effects: an appearance of an entropic force
in the uncoiling stage and a modification of the prob-
ability of disentanglement due to thermal fluctuations.
These two effects are discussed and analyzed. To
conclude, I discuss the application of the result to the
following: (a) failure stress and the growth of a plasti-
cally deformed zone in polymer glasses; (b) separation
of welded polymers; and (c) failure along polymer/matrix
interfaces.

2. The Model

Here, disentanglement is assumed to be a local
process. This means that during disentanglement the
force is transmitted through one (the primary) chain
from the pulling point to an entangled point. The force
builds up locally at that point until it is disentangled.
Once that happens, further pulling of the primary chain
continues. Although outside the assumptions of the
present model, it should be mentioned that a nonlocal
disentanglement process may also occur, whereupon
increasing the force on the entangled point leads to* E-mail: rbbll@phy.cam.ac.uk.
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pulling of the anchor chains before the point is disen-
tangled. The force is then distributed over several
entanglement points that are not necessarily on the
same chain. These points are connected through a tree
that includes the primary and secondary strained
chains. Two scenarios are then possible:

(i) The force on an entanglement point along the tree
exceeds the local threshold (see calculation of the
threshold forces distribution below). Disentanglement
of that point occurs, at the conclusion of which there is
a sharp increase of the force on the nearby entangled
points. This, in turn, may lead to a disentanglement of
another point and so on, resulting in an avalanche. The
statistics of avalanche sizes would be interesting to
study and may even exhibit a self-organized distribution
under suitable conditions.

(ii) Due to the force redistribution, each entangled
point carries a stress that is below its threshold.
However, if the force is transmitted to several entangle-
ment points via one of the chains in the tree, this force
may reach scission level before any of the individual
entanglement points disentangles and the chain could
snap.

Thus, a nonlocal disentanglement process leads to
rich dynamics, but these are outside the scope of this
work and are left to a later study. It should be com-
mented, however, that the analysis presented here
forms a basis for addressing issues concerned with
nonlocal disentanglement.

The system under consideration is an ensemble of
entangled polymer chains, where a chain typically
occupies a free volume of linear size R. In equilibrium,
this would be the radius of gyration, Rg. From this
ensemble, a single chain is being pulled out. It is useful
to first view the dynamics of the pulling process
mechanistically and introduce effects of temperature
later on. The chain is imagined to be entangled at
particular entanglement points (EPs), indexed by n )
1,2,..., Nep, with a chain length of ln forming the nth
segment between the (n - 1)th and the nth points, and
this length is measured in units of Kuhn’s length a. The
pulling point can be labeled as n ) 0. Between any two
such points, the polymer chain is presumed to be coiled
with a Gaussian distribution. Generally, pulling at a
point anywhere along the chain may result in simulta-
neous pulling on both sides of the point with disen-
tanglements occurring along both legs where a leg is
the part of the chain extending from its end to the
pulling point. For clarity, it is assumed here that
disentanglements occur only along one leg of the chain
as it is pulled. The statistics of pulling two legs are
slightly more involved but still manageable by building
on the analysis presented below. The process begins
with a segment of the chain being pulled out at a
constant speed, v. The first coiled segment starts to
uncoil, which occurs without resistance (a resistive force
appears with increasing temperature when entropic
effects come into play). After a time interval of

the first segment has been completely uncoiled. Note
that the first segment may be uncharacteristically short,
but this detail should be insignificant when the number
of EPs is not anomalously small. Now, a force starts to
build up on the first EP. The force is transmitted
through the stretched part of the chain whose stiffness
is ks/l1, where ks is Young’s modulus. During this stage,

the force on node 1 increases continuously with time at
a rate

When the force reaches a threshold value, f1, the node
disentangles and the second segment starts to uncoil.
The disentanglement time is defined as the time that
it takes to reach f1 and is given by

During this time, the chain is not pulled out. Rather,
its already uncoiled part stretches elastically to an
additional length of (f1l1)/ks, which is small due to the
high value of ks. Immediately after the node disen-
tangles, the chain relaxes back. After another uncoiling
period, the second segment becomes fully stretched, the
next EP feels an increasing stress, and it disentangles
when the force reaches f2. The process repeats itself
until the entire chain is stretched out. The time between
the disentanglements of two successive points, n - 1
and n is

where tu,n is the uncoiling time of the nth segment, td,n

is the disentanglement time of the nth EP, ∑j)1
n(t)lj is the

length of the chain pulled out after n(t) such events.
Since the force on the nth EP increases linearly with
time between 0 and fn then the force inside this interval
is fnδtn/td,n, where δtn is the time from the beginning of
disentanglement. It follows that the force on the chain
at each moment is

where Θn ) ∑k)l
n (tu,k + td,k) and H(x) is the Heavyside

step function that is unity for x > 1 and vanishes for x
< 1. From eq 4, the distribution of the time intervals,
tu,n ) ln/v, depends only on the distribution of ln. The
distribution of td,n depends both on the distribution of
forces, fn, and on the distribution of the length, ∑j)l

n lj.
Because the distribution of ln is narrow, its PDF, Pl(ln),
can be safely assumed to be Gaussian.5

where 0 < lmin , l0 , lmax and σl is the width of the
Gaussian distribution. The normalizing factor Cl is, to
an exponentially good accuracy, 1/(2π)1/2σl.

3. The PDF of the Disentanglement Threshold
Forces

An entanglement occurs at a point where the chain
is wrapped around an anchor chain (or chains) over an
angle that lies between 0 and 2π, as sketched in Figure
1.6

The black bead in Figure 1 represents the projection
of the anchor, which is oriented locally normal to the

t1 ) l1/v (1)

Ḟ ) ksv/l1 (2)

td,1 )
f1l1

ksv
(3)

Tn ) tu,n + td,n )
ln

v
+

fn∑j)1
n(t)lj

ksv
(4)

F(t) )

∑
n)1

N(t)

[H(t - Θn-1) - H(t - Θn-2 - tu,n)]
δtn

td,n

fn (5)

Pl(ln) ) Cl exp[-
(ln - l0)

2

2σl
2 ] lmin < ln < lmax (6)
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wrapping (page) plane. The orientation of the anchor
effectively reduces the dimensionality of the kinetics,
and the force that pulls the white-beaded chain can be
regarded as lying in the page plane. Even if this is not
initially the case (meaning that the force has a compo-
nent along the anchor), or when the anchor is initially
mobile, the pulling force will cause a local adjustment
of the chains until the anchor chain cannot move any
further. Thus, the anchor is immobile throughout the
process of interest. Disentanglement occurs when beads
1 and 2 move one position clockwise around the anchor.
If the activation energy needed to move one segment of
the chain (say, from position 1 to 2 in Figure 1) is
defined as Eb, there is a barrier of mEb to climb in order
to initiate a displacement of m segments of the chain
in contact with the anchor. The anchor may consist of
one chain, in which case m is expected to be 2, or it may
consist of a bunch of chains, in which case m may be
larger (but the barrier Eb may be lower). For clarity, it
is assumed here that m ) 2. Consider now a force f
tugging at bead 3. The active component pulling on the
entanglement point is

In an isotropic medium, the angle θ is uniformly
distributed, and so, F1 can take, in principle, any value
between f and 0. On gradual increase of f, a threshold
is reached, and the chain starts moving. The force F2 )
F1 pulls on the segment between 2 and 1, and the angle
R (presumed fixed) is determined by the details of the
molecular potentials. For simplicity, it is assumed here
that once a chain starts slipping it will continue to do
so and the EP disappears. It is possible to modify this
picture to a more elaborate mechanism of disentangle-
ment, but this model suffices to capture the essential
features. The slipping criterion is that slipping occurs
when the work needed to move the chain by a, 2aF1, is
equal to the activation energy 2Eb, or F1 ) Eb/a. Eb/kB
(kB being Boltzmann constant) is expected to be some-
what above the glass-transition temperature and only
weakly (or not at all) dependent on molecular weight.
For polystyrene, it is estimated here roughly as 400K.
The value of a can be taken as 5 Å. This puts F1

approximately at a value of 11 pN. We now need to find
the probability density of f needed to provide the
component F1. The distribution of the value of f stems
from the randomness of the angle θ that the global
pullout direction makes with the local direction of F1.
In an isotropic medium θ, is uniformly distributed
between 0 and some θmax < π/2

The reason for not considering θ < 0 is that a force in
this direction leads to uncoiling, rather than a sliding
motion around the anchor chain and therefore does not
entail disentanglement. The reason for disregarding
values of θ that are too close to π/2 is that in this regime
the force is almost normal to F1 and will only serve to
adjust the position of the anchored chain. If the anchor
chain cannot be adjusted further, then the force needed
to provide a component of size F1 is too large and
scission will occur before sliding. In fact, we can
designate this as a condition for θmax

where Fscission is the force required for the scission of
one chain. Because θmax is close to π/2, then ε , 1. From
eq 7 and the distribution of θ, we can now deduce the
PDF of f.

where fmin ) F1 and fmax ) fmin/cos θmax. The significant
feature to note is the non-Gaussian form of this PDF
for both large and small f. For f ) fmin + δf, where δf ,
fmin, the PDF diverges as Pf (f) ∼ 1/(δf)1/2. For f f fmax,
the PDF decays as Pf(f) ∼ 1/f 2.

The clearest manifestation of the non-Gaussian be-
havior of the force distribution comes from the calcula-
tion of the moments,

The first few moments are

All the moments are dominated by the upper limit
defined in eq 8,

Figure 1. Disentanglement configuration. The black circle
is an anchor chain perpendicular to the page plane around
which the disentangling chain moves.

Pθ(θ) ) 1/θmax

cos θmax ) F1/Fscission ≡ ε (8)

Pf (f ) ) 1
|df/dθ|Pθ(θ) )

1

θmaxf x(f/fmin)2 - 1
fmin f e fmax (9)

〈f k〉 ) ∫fmin

fmaxf kPf (f ) df (10)

〈f 〉 )
fmin

θmax
ln

1 + sin θmax

1 - sin θmax
〈f 2〉 )

fmin
2 tan(θmax)

θmax

〈f 3〉 )
fmin

3

4θmax[2 sin(θmax)

cos2(θmax)
+ ln

1 + sin θmax

1 - sin θmax]
〈f 4〉 )

fmin
4

3θmax
[tan3(θmax) + 3 tan(θmax)]

〈f 〉 ∼ ln(1/ε) 〈f k〉 ∼ 1/εk-1 (11)

F1 ) f cos θ (7)
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The variance (the second cumulant) of the PDF is

which is also sensitive to the large fluctuations. The
conclusion is then that the PDF is dominated by large
fluctuations and cannot be approximated by a typical
value of f. This casts some doubt on traditional models
that use the tube model with a typical friction force for
describing disentanglement in too low a range of tem-
peratures.

To plot the PDF of f, it is convenient to scale f by
defining the variable φ ≡ f/fmin. The PDF of φ has a
universal form

that is plotted for θmax ) π/2 - 0.01 in Figure 2.

4. Analysis
With the distributions of the threshold forces and the

coiled lengths explicitly known, it is possible now to
calculate the statistics of the dynamical process. The
PDF of the uncoiling time intervals is straightforwardly
related to that of the uncoiled lengths,

The PDF of the time interval between two successive
disentanglements, Tn ) tu,n + td,n, is slightly more
involved. Formally, it can be presented as

For brevity, I drop the subscript n from Tn except where
it may lead to confusion. Expressing the δ-function as
a Fourier integral and integrating over the PDFs of lj
gives

where an ) (1 + nfn/ks)l0/v and bn ) (σl/v)[n(fn/ks)2 + 2fn/
ks + 1]1/2. Using this expression, the moments of T are

where

are averages over the Gaussian kernel in eq 15. For
example,

where 〈f 〉 and 〈f 2〉 are the first and second moments of
the force distribution Pf (f ). Because the moments 〈f k〉
∼ 1/εk-1 are dominated by large fluctuations, then so
are the moments of Tn. Moreover, because 1/ε ) Fscission/
F1, it follows that

which gives a rather unexpected dependence of these
moments on the chain scission threshold.

The time that it takes the chain to go through N
uncoiling-disentanglement events is ΘN ) ∑n)1

N Tn,
whose PDF can be readily found using the above
relations:

In this expression, Θ0 ) ∑n)1
N an and Γ2 ) ∑n)1

N bn
2, and

both can be computed straightforwardly from the above
expressions for an and bn. The moments of ΘN are best
evaluated from those of Tn; for example, the mean time
to free N segments is

All of the above analysis holds as long as the total
freed length is smaller than the entire length of the
pulled leg. If the pulling point happens to be at a chain’s
end, then only one side of the chain is pulled and N <
Mc/Me, where Mc and Me are, respectively, the chain and
entanglement molecular weights. Since the pulling point
is more likely to occur at a point somewhere along the
chain, then disentanglement processes can take place
along either one or both legs. In the former case, N is
bound by the number of EPs between the pulling point

Figure 2. PDF of the normalized force Pφ(φ).

〈δ2f 〉 ) 〈f 2〉 - 〈f 〉2 ) ( fmin

2θmax
)2 [4θmax tan(θmax) -

ln21 + sin θmax

1 - sin θmax
] ∼ 1

ε
(12)

Pφ(φ) dφ ) dφ

θmaxφxφ
2 - 1

1 e φ e1/cos(θmax)

(13)

Pu(tu) ) v
x2πσl

exp[-
(tu - t0)

2v2

2σl
2 ]

PT(Tn) ) ∫fmin

fmaxPf (f n)[∏
j)1

n ∫Pl(lj) dlj] δ [Tn -

((1 + fn/ks)

v
ln +

fn

vks
∑
j)1

n - 1

lj)] dfn (14)

PT(T) ) ∫fmin

fmaxPf (fn) 1
x2πbn

exp[-
(T - an)2

2bn
2 ] dfn (15)

〈Tk〉 ) ∫TkPT(T) dT ) ∫fmin

fmax dfnPf (fn)[Tk]g (16)

[Tk]g ) Tk 1
x2πbn

exp[-
(T - an)2

2bn
2 ] dT

〈T〉 ) ∫fmin

fmaxPf (f )an(f ) df ) (1 + n
ks

〈f 〉) l0

v
(17)

〈T2〉 ) ∫fmin

fmaxPf (f )(bn
2 + an

2) df )

〈T〉2 + (σl

v )2 [ n
ks

2
〈f 2〉 + 2

ks
〈f 〉 + 1] (18)

〈Tk〉 ∼ 〈f k〉 ∼ (Fscission

F1
)k-1

PΘ(Θ) ) ∫fmin

fmaxexp[-
(Θ - Θ0)

2

2Γ2 ][∏
n)1

N ∫Pf (fn) dfn] (19)

〈ΘN〉 ) ∑
n)1

N

〈Tn〉 ) N
l0

v(1 +
N - 1

2

〈f 〉

ks
) (20)
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and the end of the chain along the pulled leg. The latter
case requires some extension of the present statistical
analysis and will be addressed elsewhere. Once the
chain is fully stretched, further pullout is disentangle-
ment-free and takes place by sliding against friction
with other chains. Crossing over to this mechanism
during an experiment results in a distinct change of the
force statistics, which is bound to be observable. Let us
calculate the expected average force needed to maintain
the constant rate, v. During the uncoiling period, the
chain offers very little resistance compared to the
disentanglement periods, which therefore will be ne-
glected here altogether. During the nth disentanglement
period, the force increases gradually from 0 to fn. The
average force is obtained by time averaging of F(t) (eq
5) over a time ΘN:

This integral is evaluated in Appendix A and, to second-
order in 〈f 〉/ks, it gives

The reason for expanding in this variable is that 〈f 〉/ks
has to be small or else scission occurs. Equation 22
presents us with a surprise: to lowest order, the average
force is proportional to the second moment of the PDF
of the threshold forces rather than to the mean. Because
that PDF is dominated by large fluctuations

then this is immediately reflected in the average pulling
force. Because ε is small, Fh is large, which is good news
for AFM measurements. It should be noted that al-
though ε is small, the product ksε is still larger than
fmin, again, due to the condition that the forces on the
chain are below the scission threshold. One can simi-
larly calculate the average of the second moment

but presenting this expression in a simpler analytical
form is less straightforward and is left for a later report.

Let us calculate next the total work needed to pull
out a chain at zero temperature, Wh c. First, consider the
work needed to disentangle the nth EP,

where the denominator represents the spring constant
at the nth stage. Summing over N EPs and averaging
over the PDFs of fn and lj, the total work is found to be

Note the dependence on the second moment of the PDF
Pf (f ) that is very large due to the significant contribu-
tion of large fluctuations. It follows that the work is
much larger than what one would expect from a typical
value of f.

5. Numerical Analysis of the Dynamics
To check the above analysis, a numerical code has

been constructed that simulates the dynamics of a chain
as it is being pulled out from the bulk at a constant rate.
The chain is modeled as a one-dimensional line, and a
set of entanglement points is determined along the
chain by choosing the length of the segments from the
normal distribution given in eq 6. Three values of l0
have been studied: l0 ) 100, 500, and 1000. For each
distribution, two widths were simulated: σl ) 0.1l0 and
0.3l0. The chain is assumed to be sufficiently long that
it does not become fully stretched during the simulation
time. For each EP, a threshold disentanglement force
is chosen randomly from the PDF Pf (f ), where fmin, is
normalized to 1 and θmax ) π/2 - 0.01 (corresponding
to fmax ≈ 100 fmin). The pullout rate has been normalized
to v ) 1. Given a particular chain with a choice of
segments and threshold forces distributions, it is de-
termined at each time step whether the chain is in an
uncoiling or disentangling state. The force is then
calculated, and a force time series is constructed. A
typical such plot is shown in Figure 3. The plot shows
large fluctuations of the pulling force, as expected from
the PDF (see eq 9). The effect of changing the width of
Pl(1) has been found to be negligible for values of N
already of order 10. The mean force, Fh , has been
computed numerically for 10 000 chains with l0 ) 1000
and after N ) 500 disentanglements. The resulting
distribution is plotted in Figure 4. Equation 22 predicts
for these parameters that the maximum will be at
approximately

where the correction term of order 1/ks
2 has been

neglected. The plot agrees very nicely with the theoreti-
cal prediction.

Next, I compute the mean work, Wc, needed to pull
one chain through 500 disentanglements, with the same
chain parameters. From eq 25, the average work after
500 disentanglement events is approximately Wc ≈
82l0. The distribution of Wc/l0 over 10 000 chains is
shown in Figure 5. The peak occurs at about 100l0, in
reasonable agreement with this estimate.

6. Effects of Temperature
Temperature introduces two effects: First, the uncoil-

ing process is no longer force-free due to the entropic
contribution to the free energy. Second, the probability
of disentanglement changes due to the assistance of
thermal fluctuations in getting the beads of the pulled

Fh ) 1
ΘN

∫0

ΘNF(t) dt (21)

Fh )
(N - 1)

4ks
〈f 2〉 - 1

4ks
2[(N - 1)2

2
〈f 2〉〈f 〉 +

(N + 1)(2N + 1)
3N

(〈f 3〉 - 〈f 2〉〈f 〉)] (22)

〈f 2〉 )
fmin

2

θmax
tan θmax ≈ 2fmin

2

πε

δ2F ) F2 - Fh 2 )
1

ΘN
∫0

ΘN[F2(t) - 1
ΘN

∫0

ΘNF(t′) dt′] dt (23)

Wn ) 1
2

fn
2

(ks/∑j)1
n lj)

(24)

Wc ) 〈∑
n)1

N

Wn〉 )
〈f 2〉l0

2ks
∑
n)1

N

n )

N(N + 1)l0

4ks

fmin
2 tan(θmax)

θmax

≈
N2fmin

2 l0

2πεks

(25)

Fh ≈ N〈f 2〉
4ks

≈ 0.2
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chain over the potential barrier. Other effects are
neglected here, e.g., the temperature dependence of the
distribution of chain lengths between EPs.

For the uncoiling process, it is a textbook exercise7 to
show that stretching a freely jointed chain of length L
) Nea, whose end-to-end distance is R, leads to a
reduction in phase space that increases the free energy.
The force needed for such a stretch is the derivative of
the free energy with respect to R and has been found to
be7

where kB is Boltzmann’s constant and L-1 (x) is the
inverse of the Langevin function

By assuming a speed that is sufficiently slow to allow
the nth segment to relax yet not so slow as to allow the
entire pulled out length to equilibrate, the end-to-end
distance is the vector between the (n - 1)th and nth
EPs, R ≈ (lna)1/2. The uncoiling of the nth segment can
then be envisaged as increasing R with time and to a
good accuracy

where δt is the time from the start of the uncoiling
process. This expression will hold until R becomes about
1/3 of ln. Because of the appearance of a finite force
during the uncoiling intervals, the behavior of the force
as a function of time is smoother than the zero temper-
ature saw-tooth pattern.

Next, let us consider temperature effects on the
disentanglement probability. Recall that at zero tem-
perature the chain could slide over the anchor only when
the component of the force F1 in Figure 1 exceeded the
threshold F1 ) Eb/a. At finite temperatures, thermally
assisted hopping over the energy barrier leads to a finite
probability of disentanglement occurring even when F1
is below this threshold. Given a force F1, the probability
of jumping over the barrier is

when aF1 < Eb and p ) 1 otherwise. Here, maF1 is the
work done by the force F1 when moving the chain by
one unit a. Note that if the anchor consists of more than
one chain then the barrier height to overcome changes
somewhat and, more interestingly, may also be distrib-
uted statistically. The probability of disentanglement
is found by integrating pPθ(θ) over the range 0 < θ <
θmax, taking careful consideration of the fact that p is
nonanalytic and saturates to unity at a value of θ that
depends on f. This calculation yields

Here,

and

The details of the derivation of this expression will be
given elsewhere.8 Thus, at finite temperatures, 0 < p
< 1, and there is a nonvanishing probability of disen-
tanglement essentially at any time as the force increases
on the EP. Among other things, this affects the distribu-

Figure 3. Typical behavior of F(t) for an arbitrary chain. Note
the large fluctuations indicating that a typical force is not a
good descriptor.

Figure 4. Distribution of F(t) after 500 disentanglements
over 10 000 pullout processes. The mean length between
disentanglements is l0 ) 1000. The distribution peaks at Fh )
0.2, in good agreement with eq 22.

Figure 5. Distribution of Wc/l0 with the same parameters as
in Figure 4. The peak is at 100 in reasonable agreement with
eq 25.
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tion of the disentanglement time, td,n, and hence the
behavior of the force fluctuations on the chain. The
distribution of td,n is calculated as follows: Since dis-
entanglement may occur in principle at any force, then
one should find first the probability of disentanglement
when the force is between fn and fn + df, given that the
force started to increase from 0 at a given moment. This
probability is the product of the probability to not
disentangle until the force reaches fn, [1 - ∫o

fn Pf (f, T)
df ], and the probability to disentangle exactly when the
force reaches fn, namely, Pf (fn, T) df. A detailed analysis
of this probability and the consequences to the analysis
presented here is deferred to a later report.

7. Discussion

Understanding the dynamics of single chain pullout
and the pertinent force response is important for several
reasons. First, it sheds light on the process of disen-
tanglement dynamics in general, which provides a basis
for estimating various parameters: the number of
entanglements per chain, their distribution along the
chains, the distribution of the disentanglement forces
and the work needed to pull out a chain, to name a few.
Second, it is directly relevant to practical applications,
such as failure of polymer/polymer and polymer/matrix
interfaces. In such applications, the interfaces are the
potentially weak points and failure at these points is a
critical issue. The fact that the interface divides two
dissimilar materials is not a problem because the above
analysis can be carried out separately for each side of
the interface. For example, the distributions of ln and
fn may have different numerical parameters (although
their form is expected to remain the same). Specific
applications are polymers enhanced by rubber or fiber
inclusions, the interface between a polymer grafted onto
an elastomer network, the interface between two welded
polymers, and so on. The process that governs the
failure usually consists of many chains pulled out in
parallel, all undergoing disentanglements as described
here. Note that the velocity v corresponds in all of these
cases to the strain rate on the boundary of the deforma-
tion surface and not at the boundary of the entire
system. Disentanglement also precedes deformation
mechanisms such as crazing and debonding of adhe-
sives. In the former, the process described here is
relevant to the prefibrilation stage when individual
chains are stretched and drawn into fibrils. Because
fibril sizes and spacings are typically comparable to the
radius of gyration, only a few chains are drawn into any
single fibril and the dynamics described here applies.
In the case of debonding of adhesives, the present
description applies to the precavitation stage. In view
of these important applications, this model is currently
being extended to treat chains in parallel.4
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Appendix A: The Average Pullout Force

In this appendix, I calculate the time average of the
pullout force needed to maintain the constant pullout

rate v at zero temperature. Averaging over a time
interval ΘN, we have

Since the random variables ln are Gaussian then,
already for N of order 10, we can approximate ln by l0,
which yields in eq A.1

As discussed in the text, in most practical applications,
one expects the force to be well below the scission force,
which leads to fn , ks. Using this, we can expand the
denominator to obtain

Averaging now over the PDF of f gives
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