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Support of modified Archimedes’ law theory in
granular media

Yajie Feng, a Raphael Blumenfeld bc and Caishan Liu*a

We study the resistance force of cylindrical objects penetrating quasi-statically into granular media experimentally

and numerically. Simulations are validated against experiments. In contrast to previous studies, we find in

both experiments and simulations that the force–depth relation consists of three regimes, rather than just

two: transient and steady-state. The three regimes are driven by different dynamics: an initial matter

compression, a developing stagnant zone, and an increase in steady-state force with a fully developed

stagnant zone. By simulations, we explored the effects of a wide range of parameters on the penetration

dynamics. We find that the initial packing fraction, the inter-granular sliding friction coefficient, and the

grain shape (aspect ratio) have a significant effect on the gradient Kf of the force–depth relation in the

steady-state regime, while the rolling friction coefficient noticeably affects only the initial compression

regime. Conversely, Kf is not sensitive to the following grain properties: size, size distribution, shear

modulus, density, and coefficient of restitution. From the stress fields observed in the simulations, we

determine the internal friction angles f, using the Mohr–Coulomb yield criterion, and use these results to

test the recently-proposed modified Archimedes’ law theory. We find excellent agreement, with the results

of all the simulations falling very close to the predicted curve of f vs. Kf. We also examine the extreme

case of frictionless spheres and find that, although no stagnant zone develops during penetration into

such media, the value of their internal friction angle, f = 91 � 11, also falls squarely on the theoretical

curve. Finally, we use the modified Archimedes’ law theory and an expression for the time-dependent

growth of the stagnant zone to propose an explicit constitutive relation that fits excellently the force–

depth curve throughout the entire penetration process.

1 Introduction

The ubiquity of granular materials (GMs) in nature and their
significance to human society cannot be overstated. We interact
on a daily basis with this form of matter: sand, gravel, cereals,
powders, foodstuff, etc. An important aspect of granular
science, which is far from fully understood, is the interaction
of GMs with objects much larger than the grain size. Examples
include animal and robotic locomotion in and on sand,1,2

drilling in soil,3,4 plowing,5–7 and meteorite impacts.8,9 The
main difficulty in developing a fundamental understanding of
this interaction is that GMs combine behaviours of solids and
fluids, often simultaneously. This problem has been the focus of
many studies and a canonical experiment consists of measuring
forces on objects moving at a constant speed within GMs.5,6,10–18

The resistance force of objects intruding GM quasistatically has
been shown to follow the form2,15,19–22

F(z,v) = Fz(z) +Fv(z,v), (1)

where Fz(z) is a hydrostatic-like force that depends only on the
penetration depth, z, and Fv(z,v) is the reminiscent of viscosity,
kicking in above a critical value vc. Thus, investigations of Fz(z)
are often confined to the quasi-static regime v o vc. Many
experiments and simulations show that, at the steady state
(see below) Fz(z) = kza, but there is no consensus on the value
of a. Hill et al.23 and Peng et al.24 found a = 1.3 while Hou et al.,25

Durian et al.,12,19,26 and Lohse et al.27 measured a = 1 experimentally.
Simulations by Xu et al.16 also support a = 1.0. Kang et al.28

conducted an extensive range of experiments, all showing a = 1,
and went on to derive this value, using a continuum model.

The prefactor k was found to vary widely and be sensitive to
the intruder geometry and granular medium. This makes k
an important constitutive parameter and several attempts at
modelling it exist in the literature. An empirical approach29 fits
the resistance force by decomposing the intruder’s surface into
many surface elements, measuring the force on each surface
experimentally, and then summing them. A disadvantage of
this approach is the large number of measurements required.
Brzinski III et al.12 proposed that Fz(z) = CmrggAz, with several
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values of C: 26 � 3,19 15 � 2,12 and 35 � 5,26 all obtained by
fitting experimental data. Askari and Kamrin30 used a finite
element method simulation to show that, in cohesionless
media, frictional yielding underlies the resistive force.

Recently, Kang et al.28 modelled the resistance force to
quasi-static penetration, based on the Mohr–Coulomb criterion.
They derived a linear relation between Fz and z, by considering
only resistance forces normal to the intruder’s surface, and
established that the force follows a modified Archimedes’ law,
with the resistance proportional to the intruding volume. This
modified Archimedes’ law theory (MALT) made possible the
derivation of several key results: (i) that k depends only on the
internal friction angle f; (ii) the explicit k(f) relation; (iii) that
the initial transient nonlinear part of the FDR is the result of the
development of a stagnant zone ahead of the solid intruder.

We have three aims in this paper. The first is to use a range of
discrete element method (DEM) simulations to investigate in detail
the formation and growth dynamics of the SZ and the dependence
of this process on medium properties. The second is to establish
the dependence of the force–depth relation (FDR), and correspond-
ingly the effective macroscopic internal friction angle, on a number
of grain-scale properties, in particular, intergranular friction, grain
size distribution and aspect ratio. The third aim is to investigate in
greater detail the initial nonlinear regime of the FDR and relate it to
the growth dynamics of the SZ.

The new results in this paper are the following. Firstly, we
show, both numerically and experimentally, that what has been
regarded in the literature so far as a single nonlinear pre-steady-
state behaviour arises, in fact, from two distinctly different
processes, resulting in different forms of the FDR. The first
regime, A, involves direct material compression, while the
second regime, B, involves plastic flow of the granular medium.
We further find that the FDR in regime A is very sensitive to the
inter-granular rolling friction, but that this parameter hardly
affects regime B and the steady-state. In contrast, regime B and
the steady state (C) are found to be sensitive to the initial packing
fraction, the intergranular sliding friction, and the grain aspect
ratio. We also find that the FDR is insensitive to the grain size,
size distribution, and grain properties, such as density, shear
modulus and coefficient of restitution (COR). Another significant
result is that the SZ forms only at the beginning of the second
regime, with the steady-state regime commencing when this
development is complete. We then go on to determine the
effective internal friction angles, f, from the stress field in the
simulated media. Measuring independently the gradient of
the FDR in the steady state regime, Kf, we show that all the
simulated systems, as well as our experimental ones, satisfy
very well the theoretical relation between Kf and f, derived by
Kang et al.28 Somewhat surprisingly, we find that a simulated
system of frictionless spheres and water, in which no SZ develops,
also falls squarely on the predicted Kf–f curve. Finally, we use the
MALT to deduce the growth rate of the SZ and propose an explicit
expression for the full FDR curve.

This paper is organised as follows. In Section 2, we describe
the simulation method and system preparation. In Section 3,
we carry out a comprehensive set of numerical simulations to

investigate the dependence of the FDR on a number of grain-
scale characteristics. In Section 4, we describe our experimental
measurements of the resistance to penetration of cylinders into
GM and compare those with the simulation results. This
comparison provides a test of the reliability of the simulation
method. In Section 5, we use our DEM data to quantify and
visualise the velocity and stress fields in the GM and use these
findings to test the theoretical model. In Section 6, we analyse
the nonlinear part of the FDR and use the theoretical model to
infer the dynamics of the growth of the SZ. We conclude with a
discussion of our results and their ramifications in Section 7.

2 The numerical method

To test the modified Archimedes’ law theory for object penetra-
tion into cohesionless granular matter, as well as the dynamics
of growth of the SZ ahead of the intruding object, we carried out
large-scale simulations, using the discrete element method
(DEM).31–33 In our context, the grains and the intruding object
are the discrete elements, which interact via contact forces. The
data consist of the time evolution of the grain positions,
velocities, contact forces, and the drag forces experienced due
to an effective viscous environment. We keep track of the
normal, Fn, and tangential, Ft, components of both the elastic
and viscous forces on each grain. For the contact forces, we
adopt the Hertz–Mindlin (HM) model,34 in which the inter-
granular normal force is Hertzian35 and the tangential force is
based on the Mindlin–Deresiewicz model.36 The tangential
force includes the da Vinci–Amontons–Coulomb friction law,
with m the friction coefficient. The HM model includes a
dissipative term determined by a constant coefficient of restitution
(COR), e. In general, the COR depends on the collision relative
velocity, which can be modelled by a viscoelastic contact
model.37–41 Nevertheless, both these models are employed com-
monly in DEM simulations.17,34,42–44 In our simulations, the FDR
is found to be completely independent of the COR (see Fig. 3h),
making it prudent to use the HM model to study how the
resistance force varies with e. Following Luding,45 we model
the rolling resistance as a torque M proportional to the normal
contact force Fn and a rolling friction coefficient mr, but ignore
the effects from the torsion resistance against the relative spin
between grains. The specific expressions for various force com-
ponents are given as follows:

Fn = kndn
3/2 + gndn

1/4un, (2)

Ft ¼
ktdn1=2dt þ gtdt

1=4ut if Ftj jom Fnj j

�mFnsignðutÞ if Ftj j � m Fnj j

(
(3)

M = �mrFnR0x0. (4)

Here, dn and dt (un and ut) are the normal and tangential
components of the relative displacement (velocity) of the grain
at the contact point, R0 is the distance from the contact point to
the mass centre of the grain, and x0 is the unit angular velocity
vector of the object at the contact point. The parameters kn, kt,
gn and gt are functions of the relative displacements dn and dt,
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Young’s modulus E, shear modulus G, Poisson’s ratio n, and COR e.
These functions and all grain properties are given in Table 1.

A crucial choice in DEM simulations is the length of the time
step: too large and the grains could move erratically, missing
intergranular interactions; too small and simulating physically
realistic times becomes impractical. For quasi-static simula-
tions, a conventional choice is about 20% of the Rayleigh time
step:32 T = pdg(rg/Gg)1/2/(0.3262ng + 1.7532), where dg, rg, Gg and
ng are the particle’s diameter, density, shear modulus, and
Poisson ratio, respectively. The shear modulus was considered
to have little effect on cone penetration32 and we verified this
assumption by studying explicitly the effects of shear moduli
between 1 MPa and 1 GPa. Finding that changes in the shear
modulus have indeed little to no effect on the resistance, we used a
small value of 1 MPa in order to reduce the simulation time.

The simulated system is shown in Fig. 1. A cylinder, of
height 150 mm and diameter D = 200 mm, contains granular
matter up to a height of H = 80 � 2 mm. The number of grains

depends on their diameters, dg: about 2.94 � 106 and 4.6 � 105

for dg = 1.0 mm and dg = 2.0 mm, respectively. A cylindrical
intruder, of diameter 30 mm and length 50 mm, penetrates the
granular medium quasi-statically at velocity v o vc, where

vc �
ffiffiffiffiffiffiffiffiffiffi
2gdg

p �
10 is commonly taken as the upper limit for

quasi-static penetration.10 In this regime, the resistance force
is independent of the velocity. For the grain sizes we used,
dg = 1.0 mm and 2.0 mm, vc = 2.0 cm s�1 and 1.4 cm s�1,
respectively. We checked that the behaviour is the same for
v = 1.0 cm s�1 and v = 2.0 cm s�1 (see below) and, to reduce
simulation time, we used v = 2.0 cm s�1 for both grain sizes.

An initial simulation is run to prepare the initial state by
dropping the grains into the container under gravity until they
pile up to height H, forming about 2–3 grain layers above the
bottom end of the stationary intruding cylinder. We then let the
system equilibrate until its mean kinetic energy is less than
10�7 of the kinetic energy at the end of the dropping process.
Once the initial state has been established, the intruder is
driven down along the central axis at a constant speed v until it
reaches a final depth of 3–4 cm.

3 The resistance force

It has been shown2,18,26,28,44,46 that tangential forces on the
intruder surface are negligible in this regime and the resistance
force, F, is due to the total contribution of the normal forces
against the intruder, as well as the forces on a granular SZ,
which develops ahead of the intruder. It is convenient to define
the dimensionless resistance and penetration depth:28

~pu �
F

rgcgSR
; ~h � h

R
; (5)

where rg is the grain density, c the packing fraction, g the
gravitational acceleration, S = pR2 the intruder’s section area, R
the intruder’s radius, and h the penetration depth. For brevity,
we refer in the following to the non-dimensionalised variables
p̃u and h̃ as resistance and penetration depth, respectively.

To ensure that the process is quasi-static, we checked
the resistance numerically for penetration at v = 0.5, 1.0, and
2.0 cm s�1 into a medium with the properties specified in
Table 2. The corresponding resistance–depth graphs, shown in
Fig. 2, appear to collapse well up to fluctuations, for both the
initial nonlinear and steady state linear regimes. The graphs
also agree well with previous experimental results.2,28,47

Table 1 The parameters in the simulated contact force model, with
subscripts ‘i’ and ‘g’ denoting the intruder and grain parameters, respec-
tively. 1/E = (1 � ng

2)/Eg, l ¼ ln e
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ln 2eþ p2
p

, dg and m = rgpdg
3/6 are the

diameter and mass of each grain. mgg and mgi are the sliding friction
coefficients between grains and between the grain and intruder, respec-
tively. The rolling friction coefficients between grains and between the
grain and intruder are both represented by mr

Parameter Grain–grain interaction Grain–intruder interaction

kn Eg

3 1� ng2
� � ffiffiffiffiffi

dg
p 2

ffiffiffi
2
p

3
E

ffiffiffiffiffi
dg

p
kt 2Gg

2� ng
ffiffiffiffiffi
dg

p 4
ffiffiffi
2
p

Gg

2� ng
ffiffiffiffiffi
dg

p
gn �

ffiffiffi
5

2

r
l
ffiffiffiffiffiffiffiffiffi
mkn
p �

ffiffiffi
5
p

l
ffiffiffiffiffiffiffiffiffi
mkn
p

gt �
ffiffiffi
5

3

r
l
ffiffiffiffiffiffiffiffi
mkt
p

�
ffiffiffiffiffi
10

3

r
l
ffiffiffiffiffiffiffiffi
mkt
p

m mgg mgi

mr mr mr

Fig. 1 Schematic representation of the simulated system and experimental
system. A force sensor is connected between the intruder and the motor.
The values of the parameters in the figure are as follows. In the experiment:
D1 = 5 cm, D = 45 cm, H E 21 cm, v = 0.5 mm s�1. In the simulations,
D1 = 3 cm, D = 20 cm, H E 8 cm, v = 2 cm s�1.

Table 2 The material parameters used in the simulations in Fig. 2

Parameter Value

Grain density, rg 2500 kg m�3

Grain diameter, dg 1.0 mm
Friction coefficient, mgg 0.5
Friction coefficient, mgi 0.3
Rolling friction coefficient, mr 0.01
Grain shear modulus, Gg 1 MPa
Grain Poisson’s ratio, ng 0.3
Grain aspect ratio, r 1.0
COR, e 0.8
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We fitted the steady state regimes with p̃u = Kfh̃ + p̃0. As shown
in Table 3, we find that Kf = 23.00 � 0.15 for all three cases. The
degree of the linear correlation is quantified by R-square, whose
values are larger than 0.998 for all cases, establishing the high

accuracy of the fits. Therefore, vc o 2 cm s�1 is suitable for all
systems and we use this speed in all our simulations.

Next, we carried out simulations to study the effects of
media properties on the penetration dynamics and Kf. We
varied a number material parameters: initial packing fraction,
sliding friction, rolling friction, shear modulus, grain sizes, and
grain aspect ratios. In Fig. 3(a–f) we show the dependence of the
force–depth relation (FDR) on several medium parameters as
follows.

(a) In Fig. 3(a) we plot the dependence on the grain shear
modulus. Shear moduli of most realistic grains are too large
for DEM simulation and we adopted commonly used values:
10, 100, and 1000 MPa to test the effect of this parameter.
The packing fraction of three simulations is 0.590 � 0.002.
We find that the plots are the same except that in assemblies
of stiffer grains the fluctuations are somewhat larger. The
fluctuations are due to disintegration of force chains in the
medium causing grain rearrangements. Larger shear moduli
allow for larger magnitude forces to build up along chains,
leading to more violent chain breaks and hence larger local
rearrangements.

(b) We find that the intergranular friction coefficient has
a significant effect on p̃u. Varying mgg gradually from 0.0 to
1.5 increases the normalised force consistently by more than an
order of magnitude, as shown in Fig. 3(b). As expected, increas-
ing the intergranular friction increases the internal friction
angle48 and consequently the gradient Kf. Higher friction also
leads to larger fluctuations, again, due to the breaking of locally
stronger force chains causing larger local displacements.

(c) Interestingly, the rolling friction coefficient, mr, has no
effect on the gradient Kf. Boundary effects, however, persist
deeper as mr is increased from 0.01 to 0.03. The reason is probably
that the initial penetration involves compaction of the material

Fig. 2 The dimensionless resistance force dependence on the dimension-
less penetration depth for penetration speeds: 0.5 cm s�1, 1.0 cm s�1 and
2.0 cm s�1. The left black dashed line is where boundary effects, due to the
initial medium compaction, become negligible and the right black dashed
line is where the SZ has almost reached its final size. The formation and
growth of the SZ takes place between these lines, leading visibly to a
different penetration dynamics.

Table 3 Fits of the linear regimes in Fig. 2

v (cm s�1) Kf p̃0 R-square

0.5 23.05 2.469 0.9981
1.0 22.86 3.619 0.9991
2.0 23.14 4.575 0.9987

Fig. 3 The dependence of the force–depth relation on medium parameters. (a) The effect of shear modulus of grains for c = 0.590 � 0.002, mgg = 0.5
and dg = 2 mm; (b) the effect of the intergranular friction coefficient for c = 0.603 � 0.001 and dg = 2 mm; (c) the effect of intergranular rolling friction
for c = 0.603 � 0.001 and mgg = 0.5; (d) the effect of grain size for c = 0.632 � 0.003 and mgg = 0.5; (e) the effect of grain density for c = 0.630 � 0.004,
dg = 1.0 mm and mgg = 0.5; (f) the effect of grain aspect ratio for c = 0.630 � 0.003 and dg = 1.0 mm; (g) the effect of the packing fraction for mgg = 0.5;
(h) the effect of the COR for c = 0.603 � 0.001 and mgg = 0.5.
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ahead of the intruder and during this process grains are freer to
rotate. The higher the rotational friction coefficient the higher the
buildup of local torque moment on grains and consequently the
larger the resistance force during this stage.

(d) We find that the normalised FDR, shown in Fig. 3(d), is
insensitive at all to varying the grain size for the diameters we
used: 1.0, 1.4 and 2.0 mm, at a packing fraction of 0.632 � 0.003.

(e) We find a small effect of varying the grain density, rg,
shown in Fig. 3(e), with the resistance decreasing slightly as the
density increases. This is the result of a competition between
the smaller increase in the intergranular contact forces, which
scale as ffiffiffiffiffirgp in eqn (2) and (3), and the normalisation of the

resistance force by 1/rg, eqn (5).
(f) To test the effect of grain aspect ratio on the resistance

force, we carried out simulations with two non-spherical types of
grains: one consisting of two joined spheres, whose centres were
1/2 a diameter apart, giving a grain an aspect ratio of r = 1.5, and
another of three linearly joined spheres, with their centres
placed at half a diameter distances, giving a grain an aspect
ratio of r = 2 (see the legend in Fig. 3(f)). The larger the aspect
ratio the more difficult it is to rotate grains around a particular
axis. As expected, this reduces the ability of the medium to yield
and, consequently, increases significantly Kf and the resistance
force. We note that the mean coordination number also
increases slightly with aspect ratio for the same packing fraction,
which adds slightly to increase the resistance force.

(g) We vibrated the granular matter to obtain several initial
packing fractions. As one would expect, varying the packing
fraction, as shown in Fig. 3(g), also limits the mobility of grains,
reducing the plastic flow around the intruder and consequently
increases Kf.

(h) Finally, it is shown in Fig. 3(h) that varying the COR, e,
has no effect on the normalised FDR to within measurement
error. This is because the process is quasistatic, whereas the
COR is expected to affect mainly intergranular collisions. This
observation has a useful implication for numerical simula-
tions: it makes it possible to probe effects of packing fraction
alone on an overall quasistatic response without changing any
other macroscopic response simply by controlling the pre-
pared initial packing fraction via the COR.

4 The experiment

To validate the reliability of the simulations and complement
them, we carried out an experiment, whose setup is sketched
in Fig. 1. It consisted of driving a 7 cm long cylinder, of
diameter 5 cm, into a 21 cm deep assembly of 6 mm diameter
spherical glass beads, packed within a cylindrical container of
height 30 cm and diameter 45 cm. Before penetration, the
granular medium was stirred thoroughly by hand and then
flattened by passing a trowel across its surface in several
directions. The trowel also had bubble levels, which enabled
us to ensure that the surface was horizontal. The cylindrical
intruder was initially inserted to a depth of about two grain
diameters and then driven along the central axis of the container

at a constant speed, v = 0.5 mm s�1, which is sufficiently slow to
ensure a quasi-static process. A sensor was used to record the
resistance force during the intrusion at intervals of 0.05 s. The
experiment was repeated five times to ensure reproducibility.

To ensure that there are no crystallisation effects in the
simulations, as well as to test the correspondence between the
simulations and experiment, we simulated the experiment, using
the same parameters, with both monodisperse and polydisperse
grains, each repeated four times from different initial states. The
simulated monodisperse grain diameters and the mean diameter of
the polydisperse grains were also the same as in the experiment. For
the polydisperse systems, we used a Gaussian diameter distribution,
of mean 6 mm, standard deviation 0.3 mm and cutoffs at 4.8 mm r
dg r 7.2 mm. In Table 4, we detail all the material parameters.
During each simulation, we collected the resistance force and depth
data, and plotted the normalised FDR, which we show in Fig. 4. It is
evident from the plot that there is no discernible difference between
the plots, indicating that the grain size distribution and the grain
stiffness (which were different in the simulations, as discussed
above) give the same results for the experiment and the simulations.

Table 4 The parameters in the simulation and experiment

Parameters
DEM,
monodisperse

DEM,
polydisperse Experiment

Intruder diameter 5 cm 5 cm 5 cm
Grain diameter 6 mm 4.8–7.2 mm 6 � 0.1 mm
Grain density 2500 kg m�3 2500 kg m�3 2500 kg

m�3

Packing fraction 0.575 � 0.002 0.575 � 0.002 0.575 �
0.02

Sliding friction
coefficient

0.5 0.5 0.5

Grain shear modulus 10 MPa 10 MPa 30 GPa
Rolling friction
coefficient

0.02 0.02 —

Fig. 4 The normalised FDRs in the experiments and simulations with both
monodisperse and polydisperse grains: J – experiment; & – simulation
of monodisperse grains; } – simulation of polydisperse grains. The error
bars are the standard deviations over the four simulations and the five
experiments, respectively.
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This is also consistent with the evidence from Fig. 3(d). This
substantiates the usefulness of our DEM simulations as a faithful
description of the experiments we carried out.

5 Velocity and stress fields

The predictions in ref. 28 can be tested by visualising and
analysing the penetration process and the response of the
granular medium. In particular, most of the important infor-
mation is in the velocity and stress fields around the intruder.
The former can reveal how much of the material participates in
the SZ, and the latter can show where the material is on the
verge of yield. Simulations are useful for this purpose, enabling
us to construct these fields in three dimensions.

The test simulations were carried out varying a range of
different initial conditions and parameters. We vibrated the
granular matter to obtain several initial packing fractions; we
varied the intergranular sliding and rolling friction coefficients
independently; we also varied the grains’ shear modulus, mass
density, and even simulated three different shapes. The large
data set obtained from each simulation made it practical and
convenient to coarse grain the velocity and stress fields first.

The coarse-graining comprises ‘smearing’ the fields within
basic spherical volumes, of diameter 3dg, with a Gaussian
coarse-graining function,49,50

Wðri; rÞ ¼
1ffiffiffiffiffiffi
2p
p

w
� �3 exp � ri � rj j2

2w2

 !
: (6)

where ri, r and w are, respectively, the position of the ith grain,
the centre of the basic sphere, and the smearing range. The
coarse-grained velocity field is then

vðrÞ ¼

PN
i¼1

vi �Wðri; rÞ

PN
i¼1

Wðri; rÞ
(7)

where vi is the velocity of the ith grain and N is the number of
grains within the basic sphere.

The modified Archimedes’ law theory (MALT)28 is based on
the Mohr–Coulomb yield criterion, which states that no plastic
flow takes place if

sinf4k � s1 � s3
s1 þ s3

; (8)

where s1 and s3 are the large and small local principal stresses,
respectively. To test the model we, therefore, need to compute
the stress everywhere and visualise the spatial distribution of k.
We coarse-grained the stress tensor:

rðrÞ ¼ 6

p 3dg
� �3 X

i; j2VðrÞ
f ij � rij ; (9)

where fij and rij are, respectively, the force at and position
vector of the contact between grains i and j, and the sum runs
only over the contacts of grains contained fully within the basic
sphere, whose centre is at r. Solving for the eigenvalues of the stress

tensor, we then obtained s1(r), s3(r) and k. In Fig. 5(a and b), we
show an example of the ||v(r)|| and k fields during the penetration
simulated for v = 2 cm s�1, shown in Fig. 2.

To facilitate the MALT calculations, Kang et al.28 presumed that f
is the same as the angle of repose. However, to establish this angle
for the simulated grains not only requires additional extensive
simulations, but those are also of little use because they cannot
reproduce accurately the size and shape distributions of the experi-
mental granular material. Additionally, since the simulations are
quasistatic, then unavoidably k r sinf everywhere. We therefore
determined yielding regions in the simulations as follows. Firstly, we
measured k everywhere and recorded in each system at each time
step. We then singled out the basic spheres in which 0.995kmax r
kr kmax, and kmax is its extreme value. The value of sinf was then
defined as the average of k over these regions. The incipient yield
regions are shown (in yellow) in Fig. 5(b).

Fig. 5 and our experiments show clearly the three penetration
regimes of the FDR. Regime A extends down to h̃ E 0.16 � h̃A and
comprises a straightforward compaction of the material ahead of the
intruder. It involves no flow away from the advancing path, as can be
seen in the first row sub-figures of both Fig. 5(a and b). At the end of
this stage, a small SZ starts forming as a result of the compression.

The process enters regime B, at h̃A, when the yielded material is
forced away from the advancing path, generating a flow that can be
observed clearly in the second row sub-figures in Fig. 5(a) at h̃ = 0.24
and 0.373. During this stage, the SZ grows steadily, as seen clearly in
Fig. 5. The velocity field shows that the SZ is roughly conical
(Fig. 5(a)), but the shear bands between the boundary of the
SZ and the flowing medium distort this shape somewhat.51 The
growing SZ affects noticeably the FDR up to about h̃ E 0.61 � h̃B.
This increase is slower than during either of regimes A and the third
one, C. Below, we relate this increase directly to the growth rate of the
SZ. The distinction between regimes B and C was not recognised in
ref. 28, but this can be observed in their data, e.g. their Fig. 2(f).

Regime C commences, in principle, once the SZ has
reached a limit shape. Beyond this point, the force increases
linearly, which reflects in the MALT the fact that the effective
volume of the intruder, which consists of both the intruding
object and the SZ, has reached a maximal limiting value.28

While Fig. 2 suggests that h̃B E 0.61, the stress field shown in
Fig. 5(b) continues to evolve somewhat beyond this point,
showing a further growth of the SZ beyond h̃B. However, this
additional growth cannot be observed in Fig. 2, indicating that
it is too small to affect the resistance force appreciably.

As can be observed in Fig. 3, the buildup of the SZ and its growth
depend on the intergranular sliding friction. No evidence of any SZ
formation can be observed in simulations of frictionless grains (see
Fig. 6) and indeed no regime B appears in the corresponding FDR,
supporting our conceptual understanding of regime B. This also
agrees well with the FDR for frictionless spheres, shown in Fig. 3(b).

It has been shown that the steady-state gradient, Kf = dp̃u/
dh̃|h̃4h̃B

, is a constitutive property of the granular material,
depending only on the value of f,28

Kf ¼
2ð1þ sinfÞ
1� sinf

ep tanf
ð1
0

ZAðZ;fÞdZ; (10)
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where AðZ;fÞ ¼ r1þtan
2 b

1

r2tan
2 br3

 !sinf

esinf tan bZðZ;fÞ. The quantities b,

r1, r2, r3 and Z(Z,f) can be computed as

b ¼ p=4� f=2;

r1 ¼ R 1þ 2ð1� ZÞ
tanb

e
p
2
tanf

� �
;

r2 ¼ R 1þ ð1� ZÞ
tan b

e
p
2
tanf

� �
;

r3 ¼ RZ;

Z ¼
ðp=2
0

�ð1� ZÞey tanf cosðyþ bÞ
cosf½sin bþ ð1� ZÞey tanf sinðy� bÞ	dy:

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

(11)

The predicted dependence of Kf on f, which is shown in Fig. 7
(solid line), has been supported by experimental results in the
literature.2,26,28

This allows us to calculate f in terms of the k-field, obtained
from DEM results, then find Kf, by fitting the steady state
regime in the corresponding FDR, construct a scatter plot of
those in the f–Kf plane, and test the level of agreement with

Fig. 5 The evolutions of: (a) the velocity (||v(r)||) field and (b) the stress (k) field in the GM with penetration depth, during the simulation at v = 2 cm s�1 in Fig. 2. The
dashed and solid lines in (b) are the final and temporal boundaries of the SZ, respectively. Both the temporal and final boundaries are determined by the value of k,
derived from the stress field. The final boundaries are approximated as an isosceles triangle, of apex angle (p/2 � f), where f is determined by the value of k in
regime C, as detailed in the main text. The temporal boundaries are drawn as an isosceles triangle, whose apex is where the value of k is 0.75 sinf.

Fig. 6 The velocity field for frictionless spheres at penetration depth
h̃ = 1.6.

Fig. 7 A scatter plot of the experimental and simulated results in the f–Kf

plane. D (G), & (m), * (mr), r (dg), + (rg), J (r), } (f) and v (e) are obtained
from the DEM simulations of Fig. 3(a–h), respectively. The solid symbols
and error bars in the inset are for the systems shown in Fig. 4: ’

(monodisperse grains), K (polydisperse grains) and ~ (experiment grains).
The error bars are the standard deviations over the four simulations and
the five experiments, respectively. All the results fall nicely on the theore-
tical relation, eqn (10), shown as a solid line.
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the theoretical curve. For this test, we use the DEM results of
the systems shown in Fig. 3, each of which is represented by a
point, (f,Kf), in Fig. 7. The points collapse very nicely on the
theoretical curve. We have further checked the values of f and
Kf for the experiments and simulations with both mono-
disperse and polydisperse grains, which we show in Fig. 4.
These points are plotted in the inset of Fig. 7, and they are also
consistent with the theoretical prediction.

Fig. 7, which summarises all our experimental and numerical
observations, not only supports well the MALT for cohesionless
dry GM but it also shows the high sensitivity to intergranular
sliding friction, packing fraction and grain shapes, and the low
sensitivity to grain sizes, density, shear modulus, rolling friction
and COR. Interestingly, the system of frictionless spheres, which
develops no SZ, exhibits a finite value of f, albeit the lowest of
all the simulated systems. It should also be noted that the
theoretical curve converges to Kf = 1 when f = 0, which
corresponds to water. In this sense, the theoretical relation
(10) bridges between these two different types of fluids.

6 The nonlinear FDR regime and SZ
growth

Next, we focus on the two transient nonlinear regimes, preceding
the steady state behaviour, which we observe in both our
experiments and simulations. The MALT relates the FDR directly
with the growth of the SZ through the relation28

~pu ¼ Kf
Vð~hÞ
pR3

þ ~h

 !
; (12)

where V(h̃) in the first term on the right hand side is the
increasing volume of the granular SZ, which advances ahead of
the solid intruder, and the second term is due to the steady
increase in the volume of our solid cylinder, as it enters the
medium. The growth of the SZ, dV/dh̃ 4 0, should lead to a
super-linear form of the FDR, during the transient regime. This
is at odds with the original observation in ref. 28, in which the
gradient of the FDR appeared to start high and decrease until
settling into the steady state value Kf in regime C.

Our observations explain this discrepancy: the SZ does not
form before the beginning of regime B and it is only from that
regime onward that the MALT applies. The rapid force increase
in regime A is simply a consequence of straightforward material
compression. The apparent sub-linear increase over the entire
initial penetration is caused by the smaller overall increase in
regime B, which is a result of the initial very low gradient in this
regime – much lower than either A or C. This new understanding
allows us to deduce the growth rate of the SZ, V(h̃), from the FDR.

The rate of growth of V(h̃) must be sub-linear because the
volume eventually converges to a steady-state value. For sim-
plicity, we model the SZ as a perfect cone, whose base coincides
with the bottom of the intruding cylinder and its apex extends
by a (non-dimensionalised) distance H̃ = H/R into the granular
material. The cone volume is V(h̃) = pR3H̃/3, with H̃ increasing
from zero at h̃A (end of regime A) to H̃ss at h̃B (end of regime B).

Following observations from the observed FDRs, we take the
initial gradient to be dH̃/dh̃ = 0 at h̃A (see, e.g. Fig. 3(b, d, g) and 4).
One could argue that this value may be slightly higher in other
systems, but our next analysis can be readily adjusted accordingly,
if this turns out to be the case. We use the Mohr–Coulomb criterion
for the final, steady-state, value of the cone angle: 2b = p/2 � f,
which gives H̃ss = tan(p/4 + f/2). To accommodate both the initial
gradient and the convergence to steady state, we propose the form

~H ¼ ~Hss 1� e
�

~h�~hA
~hB�~hA

� 	2
2
4

3
5: (13)

This form, combined with eqn (12), describes the behaviour in
regime B. Specifically, for h̃A o h̃ o h̃B,

d~pu

d~h
¼

2Kf ~Hss
~h� ~hA

� 	
e
�

~h�~hA
~hB�~hA

� 	2

3 ~hB � ~hA

� 	2 � f ð~hÞ (14)

It is useful to fit the entire FDR with one analytic expression.
This requires smoothing the crossovers between the regimes.
To this end, we define a smoothing function, to be applied at
both h̃A and h̃B:

Gða; b; ~h0;DÞ ¼
bþ a

2
þ b� a

2
tanh

~h� ~h0
D

 !
: (15)

where D is a (non-dimensional) lengthscale that is much
shorter than either h̃A or h̃B � h̃A and a and b are the functional
forms of dp̃u/dh̃ far below (compared to D) and far above the
crossover point h̃0. The FDR can now be fitted as

d~pu

d~h
¼

G KA; f ð~hÞ; ~hA;D
� 	

0 
 ~ho
~hA þ ~hB

2

G f ð~hÞ;Kf; ~hB;D
� 	

~h �
~hA þ ~hB

2

8>>><
>>>:

(16)

Note that, by construction, the two gradients match at (h̃A + h̃B)/2.
All the parameters of this generalised relation can be read off
directly from the FDR. Even the crossover scale, D, can be chosen by
comparison to h̃A and h̃B � h̃A.

Integrating (16) numerically, we obtain an excellent fit for
the entire FDR curve in all the experiments and simulations.

Fig. 8 Examples of the unified fit for the entire FDR: (a) the system in Fig. 2
(v = 2.0 cm s�1), in which h̃A = 0.16 and h̃B = 0.61; (b) the system in Fig. 3(b)
(m = 1.1), in which h̃A = 0.16 and h̃B = 0.72. The squares and solid line
represent, respectively, the DEM simulation data and the fitting curve
obtained by integrating eqn (16).
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The fit quality is demonstrated for two example systems, shown
in Fig. 2, for v = 2.0 cm s�1, and in Fig. 3(b), for m = 1.1 (Fig. 8).

7 Conclusions

To conclude, we carried out a wide range of simulations and a
set of supporting experiments. We showed that quasi-static
penetration of a cylindrical object into granular materials
proceeds in three regimes, observed clearly in the force–depth
relation (FDR). The first, regime A, is short and involves an
initial compression of the material immediately ahead of the
intruder. This compression leads to a sharp, roughly linear,
increase of the FDR. During the second regime, B, the intruder
squeezes the material away from its path. This is facilitated by a
buildup of a dense cone-like stagnant zone (SZ), which pushes
the material sideways by its inclined surface. Regime B con-
tinues until the SZ reaches a final size. The nonlinearity of the
FDR in this regime is explained by the recently derived mod-
ified Archimedes’ law theory (MALT),28 eqn (12), as the result of
the growth of the SZ. Once the SZ has reached its largest size,
the penetration converges to a steady-state process, regime C,
and can continue, in principle, as long as the system boundary
and cylinder length allow. The FDR is linear in this regime,
supporting the MALT prediction of a = 1. The gradient, Kf, of
the terminal linear increase depends only on the internal
friction angle, f.28

This behaviour is consistent in all the simulations we
conducted, in which we varied the initial packing fraction,
inter-grain sliding and rolling friction coefficients, grains’ shear
modulus, density, coefficient of restitution, size distribution
(monodisperse and same-mean Gaussian), and shape (spheres,
double-spheres and triple-spheres). The only exception to this
general behaviour is a medium made of frictionless spheres, in
which we observed no SZ buildup (Fig. 6). Correspondingly, this
system also exhibits no regime B in the FDR.

The value of Kf was found to be sensitive to the inter-grain
sliding friction, initial packing fraction and grain shape. It was
hardly affected at all by the grains’ size, size distribution, shear
modulus, COR, and density. The rolling friction coefficient was
found to affect only the duration of regime A. We mapped the
velocity and deviatoric stress fields from the simulation data and
determined from the latter the internal friction angle f. Using this
value and the observed values of Kf, we constructed a scatter plot
in the plane f–Kf. We find that, in spite of the sensitivity to
granular characteristics, all the points in the scatter plot collapse
very well on top of the theoretical curve, derived by Kang et al.28

Of some interest is the system of frictionless spheres, which
need not necessarily behave like those of frictional grains. Indeed,
we have observed that the absence of friction prohibits the
development of a SZ, which agrees with the absence of the B
regime in its FDR. Nevertheless, using our method, we deter-
mined the effective internal friction angle of this system from the
k-field: f = 91� 11. Unsurprisingly, this value is lower than that of
any of the other systems we studied. Reading off the value Kf from
its FDR, we have shown that this system also falls on top of the

theoretical Kf(f) curve, demonstrating the applicability of
the MALT to this singular case as well. Moreover, eqn (10) gives
Kf(f = 0) = 1, which is the expectation from the traditional
Archimedes’ law for solids penetrating Newtonian liquids. This
suggests that relation (10) appears to bridge between the descrip-
tions of the seemingly different media of conventional liquids
and GMs.

Finally, we used our observations of the nonlinearity in stage
B of the FDR to deduce the rate of volume increase of the SZ with
depth. This expression was then used to construct an explicit
expression that fits the entire FDR curve and can be used as the
constitutive description of the described penetration process.
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