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a b s t r a c t

We analyze a recently proposed continuous model for stress fields that develop in two-
dimensional purely isostatic granular systems. We present a reformulation of the field
equations, as a linear first-order hyperbolic system, and show that it is very convenient
both for analysis and for numerical computations. Our analysis allows us to predict
quantitatively the formation and directions of stress paths and, from these, trajectories
and magnitudes of force chains, given the structure in terms of a particular fabric tensor.
We further predict quantitatively changes of stresses along the paths, as well as leakage
and branching of stress from the main paths into the cones that they make in terms of
the fabric tensor. Numerical computations in both Cartesian and cylindrical coordinates
verify the analytic results and illustrate the rich behavior discovered. All the phenomena
predicted by our solutions have been observed experimentally, suggesting that stresses in
isostatic systems can form a base model for a more developed stress theory in granular
materials.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Granular materials, such as gravel, beans, agricultural grains and seeds, and powders, play a dominant role in everyday
life [1]. It is often observed that stress transmission in these materials is markedly different than a priori predictions of
conventional elasticity theory. Of particular interest are common observations of emergence of ‘force chains’ and ‘arches’
[2,3]. It has been suggested that this is because real cohesionless granular materials are in fact two-phase composites – part
isostatic and part overconnected [4,5]. How close a granular pack is to being isostatic depends on several factors, such as
grain rigidity and connectivity at the granular level [4,7], but this issue is outside the main thrust of this paper. To develop
this picture further andmodel stress transmission in realmaterials, it is therefore important to understand first how stresses
develop in each of the pure phases separately. The aim of this paper is to study in detail the response in the purely isostatic
phase, when the structure varies nonuniformlywith position. The continuous equations of isostaticmaterials, given in detail
below, were first proposed on empirical basis in the mid 90s [8] and have been derived later from basic principles in two-
dimensional (2D) systems on the scale of very few grains [9]. In a further development, a procedure was constructed to
upscale the 2D equations to mesoscopic scales [10].

In this paper, we first reformulate the fundamental equations as a first-order hyperbolic system in a way that makes
possible a convenient analysis. This form allows us to gain insight into, and predict quantitatively, the rich patterns of
stresses that develop in purely isostatic granular systems. In particular, we shed light on a range of stress solutions andmake
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quantitative prediction on phenomena: force chain coning and meandering, growth/decay of stresses along chains, leakage
from force chains, branching of chains and non-interference of force chain cones from one another. Most importantly, we
show that predictions about stress patterns and branching can bemade directly from the stress equations without resorting
to further models or ad hoc assumptions. We demonstrate a range of non-uniform stress solutions by exact and numerical
analyses.

1.1. Stress equations for isostatic systems

Assemblies of grains are isostatic, or statically determinate, when the inter-granular forces can be fully determined from
statics, namely, from balance of forces and torquemoments. To be isostatic, a pack of infinitely rigid grains has only to satisfy
the condition that the mean number of force-carrying contacts per grain has a particular value. This value depends on the
dimensionality of the system, on inter-granular friction and to some extent on the shape of the particles [6].

In two dimensions, the balance conditions for static stress are given by two force equations

∂xσxx + ∂yσyx = gx (1)

∂xσxy + ∂σyy = gy, (2)

in the x- and y-directions, respectively, and one global torque moment condition,

σxy = σyx, (3)

where σij are the elements of the symmetric stress tensor Σ

Σ =

(
σxx σxy
σxy σyy

)
. (4)

In Eqs. (1) and (2), gx and gy are the components of an external force field Eg that may include body forces. It has been shown
in Refs. [9,10] that in isostaticity theory the equations are closed by the relation

pxxσyy + pyyσxx = 2pxyσxy, (5)

which originates from the condition of local torque balance. The parameters pij are the elements of the symmetric fabric
tensor P ,

P =

(
pxx pxy
pxy pyy

)
,

that characterizes the local structure. This fabric tensor has been defined explicitly in terms of the structure around grains in
Refs. [4,9], where it was also identified as a measure of the rotational disorder around grains. A detailed consideration of the
geometric interpretation of P and its statistical properties has shown that, on the coarse-grained scale that the equations
apply, the determinant of the fabric tensor is negative, det(P) < 0, regardless of structural correlations or anisotropy [4]. This
is an important finding that substantiates a previous suggestion, made on empirical grounds [8], that the stress equations
of isostatic granular systems are hyperbolic, as will be detailed below.

The above equations were analyzed in Ref. [5], by decoupling them into scalar integro-differential equations for the
individual stress components, σij. Although that decoupling enabled analysis of solutions for constant fabric tensors, it is not
an attractive formulation for more general cases.

In this work we:

• reformulate the field equations as a strictly hyperbolic first-order system, both in Cartesian and in cylindrical coordinates;
• show that the reformulation makes possible the general calculation of stress paths (force chains), both for constant and

variable fabric tensors;
• show that the reformulation gives novel insight into the behavior of stresses in isostatic systems and, for variable fabric

tensors, we use it to predict meandering stress chains, coning, stress growth or decay along chains, intra-cone leakage
and stress chain branching;

• derive explicit solutions for variable fabric tensors using a perturbation analysis.

We support our analytical results by numerical solutions, obtained with a third-order Essentially Non-Oscillatory
discretization of the hyperbolic system, combined with a third-order Runge–Kutta time-stepping method [11]. All results
shown are converged solutions for a large number of grid points to exclude any numerical biasing.

The paper is organized as follows: In Section 2 we reformulate the isostatic stress equations in Cartesian coordinates
as a first-order hyperbolic system. Sections 3 and 4 analyze the cases of constant and variable fabric tensor, respectively.
In particular, mechanisms for stress chains, stress leakage, stress coning, growth, decay and branching are identified and
discussed. In Section 5we present the system of equations in cylindrical coordinates. A perturbation expansion is introduced
in Section 6,which allows for analysis of the phenomena identified in Sections 3 and 4. The paper concludeswith a discussion
of the results and future work in Section 7.
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2. Derivation of the hyperbolic system of stress equations in Cartesian coordinates

Let us consider first the case pxx 6= 0. At the end of this section we comment on the special cases, when one or more of
the components of P vanish. We can rewrite Eq. (5) as

σyy = 2qxyσxy − qyyσxx, with qxy =
pxy
pxx

, qyy =
pyy
pxx

. (6)

Introducing

Eu =

(
σxx
σxy

)
,

and substituting Eq. (6) in Eq. (2), we rewrite Eqs. (1) and (2) as

∂xEu + ∂y(AEu) = Eg, with A =

(
0 1

−qyy 2qxy

)
, Eg =

(
gx
gy

)
. (7)

The eigenvalues of the matrix A satisfy the characteristic equation

−λ(2qxy − λ) + qyy = 0,

and are given by

λ1,2 = qxy ±

√
q2xy − qyy.

Since det(P) < 0 then q2xy − qyy = − det(P)/p2xx > 0, and the eigenvalues λi are distinct and real, making system (7)
strictly hyperbolic. It is well known how to formulate boundary conditions to such equations that ensure well-posedness,
as is discussed in Ref. [13].

The matrix A can be diagonalized as A = YΛY−1, with

Y =

(
1 1
λ1 λ2

)
, Y−1

=
1

λ2 − λ1

(
λ2 −1

−λ1 1

)
, and Λ =

(
λ1 0
0 λ2

)
. (8)

The columns Eyi of the matrix Y are the eigenvectors of A. Introduce the characteristic variables w1 and w2,

Ew =

(
w1
w2

)
= Y−1

Eu =
1

λ2 − λ1

(
λ2σxx − σxy

−λ1σxx + σxy

)
, (9)

and substituting them into (7), yields the system of equations

∂x Ew + Λ∂y Ew = Eh + (B − ∂yΛ) Ew, (10)

where
Eh = Y−1

Eg, and B = −Y−1 (∂xY + ∂yYΛ
)
.

Since Eh is independent of Ew and Λ is diagonal then the equations for w1 and w2 in (10) are coupled only through the term
containing B. The matrix B is singular and it has the form

B =
−1

λ1 − λ2

(
∂xλ1 + λ1∂yλ1 ∂xλ2 + λ2∂yλ2

−∂xλ1 − λ1∂yλ1 −∂xλ2 − λ2∂yλ2

)
. (11)

Significantly, note that B vanishes when the fabric tensor P is constant as a function of position.
The stress tensor Σ , given by Eq. (4), can be expressed in the characteristic variables by substitution of Eqs. (9) and (6),

Σ = w1

(
1 λ1

λ1 λ2
1

)
+ w2

(
1 λ2

λ2 λ2
2

)
. (12)

To obtain a well-posed problem we must augment the system of equations with suitable boundary conditions. If the
system (7) is valid for (x, y) ∈ Ω , then, by standard theory for hyperbolic systems, the Dirichlet conditions for stresses
should be given so that for each characteristic in Ω the corresponding characteristic variable is prescribed at exactly one
boundary point. For example, if the domain is 0 ≤ x ≤ X, −∞ < y < ∞ we can use a boundary condition of the form

−→u (0, y) = Ef (y) . (13)

For completeness, we comment that when pxx vanishes the solution of the equations is considerably simplified and the
results remain qualitatively the same, if not in details. This is also the case when both pxx and pyy vanish. pxx and pxy cannot
vanish simultaneously without violating the assumption that det(P) < 0.
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3. Constant fabric tensors in Cartesian coordinates

If the fabric tensor is constant throughout the domain, both B and ∂yΛ vanish and the system of Eq. (10) decouples into
two separate equations, one for each characteristic variable:

∂xwi + λi∂ywi = hi, i = 1, 2. (14)

In the following subsection, we analyze briefly the solutions for this case.

3.1. Stress propagation paths

We define the characteristic paths as the paths parameterized by a variable s through

dx
ds

= 1
dy
ds

= λi, i = 1, 2. (15)

The directions of the characteristic paths are given by the eigenvectors yi =

[
1
λi

]
of A. Eq. (15) can now be written as the

ordinary differential equations

dwi

ds
= hi i = 1, 2, (16)

along the characteristic paths, which for constant fabric tensors are straight lines.
Consider the semi-infinite plane x ≥ 0, −∞ ≤ y ≤ ∞. At each point (̃x, ỹ), the characteristic variables Ew can be

computed by integrating Eq. (16), each along its unique characteristic path,

wi (̃x, ỹ) = wi (0, ỹ − λĩx) +

∫ x̃

0
hi(s)ds, i = 1, 2.

The stresses σxx and σxy at (̃x, ỹ) are then given by

Eu (̃x, ỹ) =

[
σxx (̃x, ỹ)
σxy (̃x, ỹ)

]
= Y Ew (̃x, ỹ) .

The remaining stress is determined through Eqs. (3) and (5).
The physical interpretation of this solution is that a localized stress, applied at any point (0, y) along the boundary of

the domain, ‘propagates into’ the domain along the two characteristic paths emanating from y. Therefore, the characteristic
lines are also stress propagation paths. These solutions are in agreement with the stress chains found in Refs. [4,5].

Since qyy < 0, the eigenvalues of A always have opposite signs and therefore, in our chosen coordinate systems, the stress
paths have gradients of opposite signs. For qyy = −1, the matrix A is symmetric, its eigenvectors are orthogonal and hence
the stress paths are orthogonal as well.

In the following numerical solutions of Eq. (7), we take x to be the marching, or time-like, variable. That is, we first
discretize in y and then solve the resulting system of ordinary differential equations in x. Note, that x can be the marching
variable as long as pxx 6= 0.

In Fig. 1, we illustrate the above analysis by solving for an arbitrary artificial constant fabric tensor

Pc =

1
1
2

1
2

−3

 , (17)

when a narrowGaussian-shaped stress sxx is applied at three different positions along the boundary x = 0. In Fig. 1awe show
that the two characteristic paths fromeach source share theσxx(0, y) = sxx boundary load from that source, as determinedby
Eq. (9). Specifically, along eachw1-pathσxx =

λ2
λ2−λ1

sxx whileσxx =
λ1

λ1−λ2
sxx along eachw2-path. Becauseλ1 > 0 andλ2 < 0,

both these fractions are always positive. It is important to note that, although no shear stress σxy is applied at the boundary,
σxy is nevertheless nonzero along the characteristic paths. Here, σxy =

λ1λ2
λ2−λ1

sxx along the w1-path and equal in magnitude
but opposite in sign along the w2-path. The figure also illustrates the superposition of the stress paths due to the linear
character of the governing system of equations.



M. Gerritsen et al. / Physica A 387 (2008) 6263–6276 6267

Fig. 1. Contour plots of (a) σxx and (b) σxy , when narrow Gaussian-shaped stresses sxx are applied at three different positions along the boundary x = 0.

3.2. Principal stresses

The principal stresses of the stress tensor Σ in Eq. (12) are the eigenvalues of Σ , given by

σmax,min = −
Tr(Σ)

2
±

1
2

√
Tr(Σ)2 − 4 det(Σ), (18)

with Tr(Σ) = w1(1 + λ2
1) + w2(1 + λ2

2) and det(Σ) = w1w2(λ1 − λ2)
2. It is instructive to compute the principal

stresses along the characteristic paths. Inspection of (18) shows that, for any point along a stress path wi on which all other
incident characteristics have vanishing values of w, the stress tensor is singular and the principal stresses are σmin = 0 and
σmax = wi

(
1 + λ2

i

)
.

The principal stresses align with the eigenvectors of Σ and we find that the (normalized) eigenvector corresponding to

σmax is [1, λi] /
√
1 + λ2

i . Significantly, this coincides with the direction of the stress path. Thus, the direction of maximal
stress is aligned with the stress path direction, in contrast to an earlier statement [5].

In regions where more than one characteristic variable are finite, the principal stresses are determined by contributions
from several paths. In particular, in Fig. 2, we show a numerical computation of stress ellipses, for the constant fabric tensor
given by Eq. (17), near (0, 0), where both paths contribute to the principal stresses. The local directions and lengths of
the semi-major and semi-minor axes of a stress ellipse coincide, respectively, with the stress principal axes and the local
maximum and minimum principal stresses. The principal stresses are normalized by the maximum principal stress at the
boundary, sxx. The stress ellipses are drawn on top of the contour plot of σxx for comparison.

The coincidence of the maximal stress principal axis with the path direction is in agreement with experimental
observations of long force chains [2,3]. It is therefore plausible that these solutions describe the experimentally observed
force chains. The vanishing of the minimal stress perpendicular to the main stress path is also significant – it underpins the
fragility of stress paths [8], an issue that is beyond the scope of this paper and will be discussed elsewhere.

4. Variable fabric tensors in Cartesian coordinates

When the fabric tensor varies as a function of position, the characteristic variables are given by the generally coupled
Eq. (10):

∂xwi + λi∂ywi = hi − ∂yλiwi + (B Ew)i , i = 1, 2. (19)

As above, stresses propagate along characteristic paths defined by (15), but the eigenvalues λi now vary as functions
of position. Consequently, the stress paths are no longer straight and Eq. (15) must be integrated explicitly to find the
trajectories. At each point in the domain, the stress paths align with the eigenvectors of the local Jacobian matrix A. In
Fig. 3 we show solutions for a domain whose fabric tensor has the form

P =

(
1 2
2 −1

)
+ ε cos(2πx)

(
1 1
1 1

)
, (20)

with ε a small parameter, when a narrow Gaussian-shaped σxy load is applied around (0, 0). The fabric tensor in (20), is
artificial and arbitrary, chosen to illustrate clearly the direct effect of the structure on the stress field. This comment applies
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Fig. 2. Principal stress directions.

Fig. 3. Contour plots of σxx for the variable fabric tensor given by Eq. (20) when a narrow Gaussian-shaped stress σxy is applied at (0, 0): (a) ε = 0.1, weak
variations in P and B; (b) ε = 0.5, stronger variations in P and B.

to all the explicit fabric tensors used in the following. It can be observed that the boundary stress is supported by two stress
paths that waiver slightly about straight lines. Note that the periodicity of P gives rise to periodic waivering of the twomain
stress paths, as well as to a periodic stress pattern between them.

The right-hand side of Eq. (19) can be grouped into three parts, each giving rise to a different physical effect. The first, hi,
is independent of the stress field and can be regarded as an external source. The second group is

(
Bii − ∂yλi

)
wi. This term

can be immediately recognized to lead to an increase (decrease) of wi where it is positive (negative). It is possible for any
particular stress component to increase locally along a stress path, subject to specifiable constraints on the stresses both
along the path and along the sub-branches leaking from it (see below). Over distances, however, stresses must attenuate. A
detailed discussion of this issue is beyond the scope of this paper and will be given elsewhere.
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Fig. 4. Branching of stress paths resulting from a narrow Gaussian σxx applied at the boundary point (0, 0), as a result of strong gradients in P in the thin
mid-layer between the dashed lines. (a) Contour plot for σxy; (b) Contour plot for σxx .

The third group consists of the off-diagonal terms in B and are the only terms that couple between the two characteristic
paths. We demonstrate the change of the stresses along the paths in Fig. 3(b) for ε = 0.5. The coupling between the
characteristics, caused by the third group, gives rise to ‘leakage’ from the stress paths into the cone of influence. As expected,
there is no leakage to the outside of the cone of influence. The larger the gradients of P the stronger the coupling between
the wi and, indeed, both leakage from, and attenuation/growth along, the main stress paths are magnified from Fig. 3(a) to
Fig. 3(b).

Large and localized gradients of P concentrate leakage at distinct points along the paths, giving rise to branch-like stress
patterns oriented along the characteristic directions. This phenomenon is illustrated in the numerical solution shown in
Fig. 4, where the path of a localized load σxx travels through three layers. In all three layers the diagonal elements of P are
constant and identical: pxx = 1 and pyy = −1. The regions differ, however, in the off-diagonal element pxy, which varies
linearly in x. In layers 1, 2, and 3, the variations are dpxy/dx = 0.1, 4 and 0.1, respectively. The small gradients in P in
layers 1 and 3 do not give rise to any discernible leakage. In contrast, the large gradient of P in the thin mid-layer effects
strong leakage that manifests itself as a branch in the stress path. It should be emphasized that branching is a special case
of leakage when stress paths cross regions of sharp gradients of the fabric tensor P . Thus, experimental observations of
branches depend not only on force thresholding [3], but also on exact nature of local variations of the fabric tensor.

Non-straight stress chains, leakage and branching have indeed been observed in a number of experiments [3]. However, it
should be kept in mind that in most experiments the granular materials are not ideally isostatic, as discussed elsewhere [4],
and therefore that the experimental support for our results, as well as for isostaticity theory in general, is tentative at this
stage. Experimental data for purely isostatic systems are currently being planned to test these effects [12].

5. The stress equations in cylindrical coordinates

Many experiments are carried out in cylindrical geometries, e.g. Ref. [3]. This geometry is especially popular in an annulus
setup, where the granular material is confined between two circular boundaries at r = r0 and r = r1 > r0. Applying a small
radial compressive stress, σrr , and rotating one of the boundaries with respect to the other, gives rise to a shear stress σrθ .
In such experiments, the stress is not applied uniformly across the boundary, but rather at particular points on relatively
protruding grains. This generates a set of localized loads at points along the circular boundary (say at r = r0) that act as load
sources for our analysis.

In the following, we assume that the system is at rest under one such a localized load, applied at (r0, θ0) on the inner
circular boundary. The symmetric stress tensor is

Σ =

(
σrr σrθ
σrθ σθθ

)
. (21)

Setting the external force field to zero for simplicity, the force and torque balance equations for the stress components
are given by

∂r (rσrr) + ∂θ (σrθ ) − σθθ = 0, (22)
∂r (rσrθ ) + ∂θ (σθθ ) + σrθ = 0, (23)
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Fig. 5. An example of a stress solution, developing in an annulus of constant fabric tensor under shear. Three localized load sources of σrθ are applied
along the inner boundary, giving rise to three pairs of stress paths. Leakage and spiraling stress paths can be observed for constant fabric tensor.

2p̃rθσrθ − p̃θθσrr = p̃rrσθθ . (24)

The fabric components p̃ij can be written as explicit functions of both the components pkl of the fabric tensor in (5) and θ .
Assuming that p̃rr 6= 0, we can write this system for Eu, now defined as Eu = [σrr , σrθ ]T, in the form

∂rEu + ∂θ (AEu) = DEu, (25)

with

A =
1
r

(
0 1

−q̃θθ 2q̃rθ

)
, D =

1
r

(
−1 − q̃θθ 2q̃rθ

0 −2

)
.

Here, q̃ij =
p̃ij
p̃rr

. This linear system is of similar form as the corresponding system (7) for the Cartesian coordinates. The
eigenvalues of the matrix A are

λ1,2 =
1
r

(
q̃rθ ±

√
q̃2rθ − q̃θθ

)
.

The eigenvector yi, corresponding to λi, is given by yi = [1, rλi]T. Transforming system (25) into characteristic form, we
obtain

∂r Ew + Λ∂θ Ew = (B − ∂θΛ) Ew + Y−1DY Ew, (26)

with Λ = diag(λ1, λ2), and

B =
−1

r(λ1 − λ2)

(
∂r(rλ1) + rλ1∂θλ1 ∂r(rλ2)r + λ2λ2,θ

−∂r(rλ1) − rλ1∂θλ1 −∂r(rλ2) − rλ2λ2,θ

)
.

The equations for w1 and w2 are coupled both through the off-diagonal elements of B and through the off-diagonal
elements of Y−1DY . An inspection of these terms shows that even when the fabric components p̃ij are everywhere constant,
in which case thematrix B vanishes, the characteristic variablesmay still be coupled due to the off-diagonal terms of Y−1DY .
We therefore expect leakage to be prevalent in cylindrical geometries even for constant fabric tensors. The dependence of
the eigenvectors on θ and r also shows that even for constant fabric components p̃i,j, the stress paths are not straight as
in the Cartesian case, but spiral. Such a case is illustrated in Fig. 5 where three narrow Gaussian sources of σrθ are applied
along the inner boundary at r0, corresponding to a sheared annulus. In this figure, we use a constant fabric tensor P̃ with
p̃rr = 1, p̃rθ = 0.2 and p̃θθ = −0.1.
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6. Estimates and perturbation analysis for variable fabric tensors in Cartesian coordinates

In this subsection we analyze the solution for variable fabric tensors by using a perturbation expansion. In particular, we
derive an estimate of the solution in terms of the data, and arrive at useful approximations for localized boundary data and
slowly varying or locally varying fabric tensors.

Consider the domain given by X ≥ x ≥ 0, −∞ < y < ∞. We again assume, for clarity, that the force field Eg = 0. The
extension to finite Eg is straightforward. As shown previously, the system of stress equations can be written in terms of the
characteristic variables Ew as

∂x Ew + Λ∂y Ew = −∂yΛ Ew − B Ew, B = Y−1 (∂xY + ∂yYΛ
)

(27)

with Ew(0, y) = Eh(y) = Y−1Ef (y). Rather than analyzing (27) directly, we introduce the expansion

Ew = Ew0 + Ew1 + Ew2 + · · · , (28)

and split the matrix B as B = BD + B̃, with BD containing the diagonal elements of B and B̃ the off-diagonal elements. We
now let Ew0 satisfy the decoupled system

∂x Ew0 + ∂y (Λ Ew0) + BD Ew0 = 0, Ew0(0, y) =
−→h (y). (29)

This decoupled system of equations can be solved directly by integrating each of its components, w0,1 and w0,2, along the
appropriate characteristic path (x(s), y(s)), defined in (16), which gives

w0,i(x(s1), y(s1)) = e−
∫ s1
s0 [∂y(λi)+Bii]dsh(i)(y(s0)), i = 1, 2. (30)

The change in the characteristic variables w0,i is determined by

−

∫ [
∂y(λi) + Bii

]
ds, i = 1, 2. (31)

The equations for the remaining terms Ewj in the expansion take the form

∂x Ewj + ∂y
(
Λ Ewj

)
+ BD Ewj = −B̃ Ewj−1, Ewj (0, y) = 0, j = 1, 2, . . . . (32)

Again, the characteristic variables wj,i, i = 1, 2 are decoupled, but in contrast to Eq. (29) an additional source term appears
on the right-hand side of the equation. It is this source term that indirectly introduces leakage in the expansion series:
whereas an isolated boundary load leads to two independent w0,1 and w0,2 paths, nonzero w0,1 and w0,2 values along these
paths introduce growth of w1,2 and w1,1 through the source term introduced by B̃ in Eq. (32). Similar behavior is introduced
in Ewi+1 by Ewi for i ≥ 1.

To analyze the convergence of this expansion we consider the remainder

Erk = Ew − ( Ew0 + Ew1 + · · · + Ewk), (33)
which satisfies

∂xErk + ∂y (Λ Ewk) + BD Ewk = −B̃ Ewk−1. (34)
We introduce the bound

ηk(x) = max
y,0≤ξ≤x

‖Erk(x, y)‖. (35)

By integrating (33) along the characteristics we obtain

‖Erk(x, y)‖ ≤ C(X)

∫ x

0
ηk−1(ξ)dξ . (36)

Here

C(X) = beKX , K = max
0≤x≤X,y,i

(0, −∂yλi − Bii), b = max
0≤x≤X,y

‖B̃(x, y)‖. (37)

It follows (see for instance Lemma 3.3.4 in Ref. [13]) that

ηk(x) ≤
C(X)kxk

k!
max
0≤ξ≤x

η0(ξ), (38)

which goes to zero in the limit of k → ∞ for any x ≤ X . In fact, we can show convergence for any interval 0 ≤ x ≤ X < ∞.
Similarly we can derive an estimate for the full solution in the form

max
0≤x≤X,y

‖ Ew(x, y)‖ ≤ max
y

‖Eh(y)‖
∞∑
0

C(X)kXk

k!
. (39)

Note that in the constant coefficient case C(X) = 0, and the estimates are sharp, since in that case max ‖ Ew(x, y)‖ =

max ‖Eh(y)‖ and Ew ≡ Ew0. If C(X)X is small then the first term in the expansion can be expected to dominate, and the
first few terms can be used to analyze the solution. If C(X)X is not small, convergence can be expected to be slow.

We next consider the expansion in a few cases where the leading terms dominate.
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Table 1
Relative errors for σxx at x = 4 for 1, 2 and 3 terms in the expansion series

‖σxx−σxx,0‖

‖σxx‖

‖σxx−σxx,0−σxx,1‖

‖σxx‖

‖σxx−σxx,0−σxx,1−σxx,2‖

‖σxx‖

ε = 0.1 0.0237 0.0044 0.0002
ε = 0.5 0.2354 0.1483 0.0466

6.1. Slowly varying fabric tensor

Assume the equations are scaled such that the length a characteristic path travels in the domain is ∼ 1, and that the
derivatives of the fabric tensor are small, say ∼ δ, |δ| � 1. Then, derivatives of the eigenvalues are also small and B,
∂yΛ ∼ δ. Clearly the constant in Eq. (38) is C(X) ∼ δeδ

� 1, and the expansion converges very rapidly. The first term, Ew0
will be a good approximation to the full solution, indicating that stresses propagated predominantly along the characteristic
paths without discernible leakage away from these stress paths. The estimate (39) yields ‖ Ew − Ew0‖ ∼ δ. A more precise
approximation is obtained by including the next term in the expansion, Ew1, which is generated by the coupling term on the
right-hand side

(
B̃ Ew0

)
. This takes into account the primary leakage. Now the error is ‖ Ew − Ew0 − Ew1‖ ∼ δ2.

In Fig. 6, we have computed the approximation to σxx corresponding to the first term, and both the first and second terms,
of the perturbation expansion, respectively, for the same cases as in Fig. 3a, that is with ε = 0.1 in (20). The corresponding
derivatives of the fabric tensor are ∼ ε. The fabric parameters vary slowly, and we expect the perturbation expansion to
converge quickly. Table 1 lists the relative error ‖σxx(x, y) −

∑k
i=0 σxx,i(x, y)‖/‖σxx(x, y)‖ at x = 4, where σxx,i is the stress

corresponding to Ewi. Indeed, the agreement between the approximation given in this figure and the full solution is very
good, indicating that primary leakage dominates. Note that the error is approximately multiplied by ε each time a term is
added. This behavior of the relative error also holds for ε = 0.5. As expected, more terms are now required to approximate
the solution well, as is evident for the errors listed in the table, as well as Fig. 7.

This behavior of the relative error also holds for ε = 0.5, for which Fig. 7 illustrates that in this case indeed more terms
are required to approximate the solution well.

6.2. Fabric tensor varies in small region or thin layer

We now assume that P is constant except in a small region Ω̃ , any characteristic path in Ω̃ has length s0 ≤ δ � 1, and
in Ω the growth and decay and coupling terms (b and K ) are bounded but not small. A perturbation expansion is valid, with
C(X)x ∼ δbeδK . Clearly, it will converge quickly only if δ is sufficiently small. If a stress path along one characteristic enters
Ω̃ , the coupling between the characteristic variableswill generate a secondary stress path along the other characteristic. The
strength of the secondary path will be proportional to δbeδK . As we will see in the following example, this mechanism can
explain the branching phenomena observed in experiments directly from the stress equations. This is in contrast to models
of force branching that had to introduce additional assumptions [14].

As an example and for clarity, we analyze branching caused by an isolated thin layer of high-gradient P . Consider a
material with a constant fabric tensor, P1, for 0 ≤ x ≤ x0, and another constant fabric tensor, P2, for x0 + δ ≤ x. P varies
continuously within the thin layer between these regions, x0 ≤ x ≤ x0 + δ, δ � 1. Let Y1 and Y2 be the eigenvector matrices
corresponding to P1 and P2, respectively. The solutions in the two constant layers can be expressed with the help of the two
sets of characteristic variables, Ew(1)

= (w
(1)
1 , w

(1)
2 )T and Ew(2)

= (w
(2)
1 , w

(2)
2 )T, as

Eu(x, y) =

{
Y1 Ew(1)(x, y) 0 ≤ x ≤ x0,
Y2 Ew(2)(x, y) x0 + δ ≤ x.

(40)

Here w
(j)
i is constant on characteristic path iwithin the constant layer j.

To analyze how the middle layer couples the stresses in the two constant layers that it separates, it is convenient to
rescale (7) in the x-direction by introducing

x̃ =
x − x0

δ
, u(x, y) = ũ(x̃, y),

yielding a system in the layer of the form

∂x̃ũ + δ∂y(A(δx̃ + x0, y)ũ) = 0, 0 ≤ x̃ ≤ 1.

A regular perturbation expansion in δ can be performed, showing that ũ(x̃, y) varies only slowly with x̃. In particular,

u(x0 + δ, y) = u(x0, y) + O(δ), (41)

which couples the solutions in the two constant layers. There is no difficulty in letting δ → 0, showing that the limit solution
will be continuous at x = x0 even though the limit fabric tensor is discontinuous.
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Fig. 6. Contour plots of σxx for the first two terms in the expansion for the variable fabric tensor given by Eq. (20) with ε = 0.1 when a narrow Gaussian-
shaped stress σxx is applied at (0, 0): (a) Exact solution; (b) first term in the expansion; (c) first and second terms in the expansion; (d) first, second and
third term in the expansion.

Now consider a load Eu(0, y) localized around y = y0. In the first layer the solution Euwill consist of stress paths emanating
from (0, y0). On each of these paths only one of w

(1)
1 and w

(1)
2 is nonzero. By expressing (41) in terms of the two sets of

characteristic variables one obtains

Ew(2)(x0 + δ, y) = Y−1
2 Y1 Ew(1)(x0, y) + O(δ), (42)

where in general Y−1
2 Y1 will be a full matrix. Let (x0, ys) be a point where one of the stress paths in the first layer reaches

the connecting layer. By (42), both w
(2)
1 and w

(2)
2 will be nonzero at (x0 + δ, y0), the corresponding point on the other side of

the transition layer. This means that two stress paths emanate from (x0 + δ, y0). In other words, branching occurs. In Fig. 8
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Fig. 7. Contour plots of σxx for the first two terms in the expansion for the variable fabric tensor given by Eq. (20) with ε = 0.5 when a narrow Gaussian-
shaped stress σxx is applied at (0, 0): (a) exact solution; (b) first term in the expansion; (c) first and second terms in the expansion; (d) first, second and
third term in the expansion.

we show three numerical solutions, with δ = 0.5, 0.2 and 0.01, to illustrate the above analysis for a narrow gaussian σxy
centered at (0, 0). We set x0 = 1 and use

P1 =

(
2 1

1
−3
2

)
, P2 =

(
1 1
1 −3

)
. (43)

In this case the matrix in (42) connecting the two sets of characteristic variables is the full matrix

Y−1
2 Y1 = −

1
8

(
3 7
5 1

)
.
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Fig. 8. Contour plots of σxx for the first two terms in the expansion for the variable fabric tensor given by Eq. (43) when a narrow Gaussian-shaped stress
σxy is applied at (0, 0): (a) dx = 1; (b) dx = 0.1; (c) dx = 0.01.

The fabric tensor in themiddle layer varies linearly between the two tensors. To within our numerical accuracy, the solution
for δ = 0.01 is indistinguishable from the δ = 0 limit solution.

7. Discussion and conclusions

We have analyzed a recently proposed continuous model for stress fields that develop in two-dimensional isostatic
granular systems [9,4]. We have re-formulated the field equations as a linear first-order hyperbolic system and have shown
that this form is very convenient both for analysis and for numerical computations. Our analysis reveals wide range of non-
uniform stresses, which bear good resemblance to the rich stress patterns observed experimentally, and it makes possible
several significant new predictions. In particular, it allows us to predict quantitatively the formation and directions of stress
paths and, from these, the trajectories andmagnitudes of force chains [3].We can further predict growth or decay of stresses
along the main paths, as well as leakage and branching from the main paths into the cones that they make, in terms of
the fabric tensor used to describe coarse-grained geometrical properties of the material. We have carried out numerical
computations which verify the analytic results and illustrate the rich behavior that we have discovered.

In the analysis presented here, we have only used synthetic fabric tensors. One reason is that there is very little data
at this stage on realistic fabric tensors for isostatic systems. Such data is currently being collected on simulated granular
packs. Preliminary results suggest that the distribution of the components of the tensor P is exponential [15]. However,
we intend to extract better data on the statistics of the fabric tensor from measurement of real granular materials close
to isostatic states that are being currently planned [12]. Another reason is that the artificial fabric tensor which we have
selected illustrate clearly the effects of the structural characteristics on the stress patterns.

Our results pave the way to a range for possible future research. One direction consists of tests of our predictions against
experimentalmeasurements of fabric tensors and statistics of stress path networks in systems that are very close to isostatic
states. Another significant direction is an extension of the analysis to realistic granular systems. As has been mentioned in
the introduction, it has been proposed that real systems are non-isostatic, comprising both overconnected and isostatic
regions. The simplest way to use this picture is to assume that the overconnected regions respond to loading elastically and
model real granular systems as stato-elastic composites: part isostatic and part elastic. Such a theory is yet to be developed,
but we hope that the new insights provided by our analysis will make it possible to study more closely such two-phase
mixtures. A third line of continued research is to use our static stress solutions to predict dynamics of rearrangement of
granular materials under increased loading. In realistic isostatic granular systems there is an yield stress above which the
configuration of the system changes. The yield stress defines a surface in the space spanned by the stress components, known
as the yield surface. The larger the system the smaller the volume that the yield surface envelopes around zero stresses. On
applying a load to thematerial it reorganizes until it settles into a newmechanical equilibrium, with new fabric parameters.
With simple assumptions on this quasi-static dynamics and presuming that the material settles into an isostatic state, it is
possible to construct a non-linear model of such behavior. We are currently investigating such a model.

In conclusion,

• a new and very convenient formulation of the continuous stress equations isostatic granular systems has been presented;
• the formulation allowed us to calculate stress paths directly, for both constant and variable fabric tensors, without any

need for the full stress solution;
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• terms effecting leakage and branching for variable fabric tensors have been identified explicitly and the rich stress
patterns that emerge have been shown to be readily analyzable;

• a perturbation analysis has been constructed and demonstrated for the analysis of stress solutions for strongly varying
fabric tensors;

• the analysis has been carried out for both popular experimental setups: Cartesian and cylindrical geometries.
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