
~ Pergamon Progress in Materials Science Vol. 38, pp. 425-474, 1994 
Copyright © 1994 Elsevier Science Ltd 

Printed in Great Britain. All rights reserved 
0079-6425/94 $26.00 

0079--6425(94)00006-9 

FRACTURE SURFACES: A CRITICAL REVIEW 
OF FRACTAL STUDIES A N D  A NOVEL 

MORPHOLOGICAL ANALYSIS OF SCANNING 
T U N N E L I N G  MICROSCOPY MEASUREMENTS 

Victor Y. Mi lman ,*§  Nad ia  A .  S t e l m a s h e n k o ?  and 

Raphae l  B l u m e n f e M ,  II 
*Solid State  Divis ion,  O a k  Ridge  N a t i o n a l  L a b o r a t o r y ,  O a k  Ridge,  T N  37831- 

6032, U.S .A.  
t C a v e n d i s h  L a b o r a t o r y ,  Univers i ty  o f  Cambr idge ,  Mad ing ley  R o a d ,  

C a m b r i d g e  C B 3 0 H E ,  U .K.  
:[:Princeton Univers i ty ,  P r ince ton  Mate r i a l s  Inst i tute ,  Pr inceton,  NJ  08540- 

5211, U . s . A .  

CONTENTS 

1. INTRODUCTION 
2. TECHNIQUES OF FRACTAL ANALYSIS OF SURFACES 

2.1. Basic Definitions 
2.2. Perpendicular Sectioning Method 

2.2.1. Profile length measurement 
2.2.2. Pair correlation function and Fourier analysis 
2.2.3. The return probability histogram 
2.2.4. The variation method 

2.3. Slit Island Method (SIM) 
2.4. Direct Surface Area Measurement 
2.5. Determination of Scaling From Measurement of Non-Structural Properties 

3. EXPERIMENTAL DATA ON FRACTAL CHARACTERISTICS OF FRACTURE SURFACES 
3.1. Why is the Fracture Surface Fractal? How Universal is this Feature? 
3.2. Brittle Fracture 

3.2.1. Ceramics and glasses 
3.2.2. Metals and alloys 

3.3. Ductile Fracture 
4. k CORRELATOR FOR SCALE INVARIANT STRUCTURES 
5. STM STUDY OF FRACTURE SURFACES 

5.1. Experimental Details 
5.2. Experimental Results 

6. SUMMARY OF CONCLUSIONS 
ACKNOWLEDGEMENTS 
REFERENCES 
APPENDIX 

425 
427 
427 
428 
429 
429 
431 
431 
431 
434 
434 
435 
435 
437 
437 
441 
445 
453 
454 
459 
461 
470 
472 
472 
473 

1. INTRODUCTION 

The last  decade  has  seen an  i m p o r t a n t  deve lopmen t  tha t  d ras t ica l ly  changed  the s tatus o f  
f r ac tog raphy  as a b ranch  o f  science. Ins tead  o f  being pure ly  descr ipt ive  col lect ion o f  
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observations, it is increasingly resorting to powerful mathematical apparatus and is effectively 
becoming a quantitative field. This achievement owes much to the introduction of the concept 
of fractal geometry for characterization of the morphology of irregular surfaces. To review 
the mathematical foundations of fractal geometry is outside the scope of this paper, and for 
a survey of this subject the reader is referred to Refs (1-3). However, only a few conceptually 
simple techniques are essentially needed in order to discuss the fractal features of the fractured 
surfaces. This was demonstrated in a seminal paper by Mandelbrot e t  al .  ~4) who introduced 
the main ideas and methods of the fractal analysis to the metallographic community. The 
wave of publications that immediately followed was dedicated to the application of essentially 
the same methods as in Ref. (4) to a variety of materials and types of fracture. As the amount 
of experimental data increased, it became possible to search for reliable correlations between 
the fractal properties of the fracture surface and the fracture toughness of material (4'5) and 
to study relative accuracy of  different experimental techniques used in the fractal analysis/6) 
In parallel, numerical simulations of the fracture process gained popularity and have become 
a very useful tool in the analysis. For example, these simulations can give estimates of fractal 
characteristics of the branching crack pattern for different models of material failure. 
Unfortunately, a recent review of this work by Herrmann (7) clearly shows that the predictions 
are essentially model dependent. It follows that reliable experimental data are significant both 
to distill the essential features that are required to generate a model for a given material, and 
to compare with the results of the simulations. 

In this review we concentrate on the experimental techniques of the fractal analysis rather 
than discuss numerical modeling approach. There are several unresolved controversies, as 
well as important questions yet to be addressed despite the recent intensive activity in the field. 
First it is useful to have a compilation of the available experimental data. One of the 
difficulties in such a compilation is that there are strong variations in the fractal dimension 
measured in different studies, depending on the method of measurement. Therefore, part of 
the problem stems from the variety of experimental techniques combined with insufficient 
analysis of their comparative merits. Consequently, interesting data are sometimes misinter- 
preted as we show below. Another problem relates to the universality of the results, namely, 
the possible independence of the roughness exponent ~ on the specific material under study. 
This difficulty is amplified due to the fact that most of the fractal analysis results refer to a 
rather narrow interval of characteristic lengths that extend from 1 #m to 1 mm. Although 
measurements on such sizes can point toward existence of scale-invariance of the surface, it 
nevertheless fails to allow for accurate estimates of (. In fact many existing results for ( are 
obtained from scaling over only one decade of, e.g. power spectrum of the height profile. (4) 
We suggest here that this difficulty is inherent to the fracture problem, and is independent 
of the quality of the measurements. To assist with this issue we propose a new analysis 
technique that goes beyond the conventional routine. The difficulty with the conventional 
approach is that in all methods only two-point correlations are analyzed to find the fractal 
dimension or the roughness exponent. This parameter is currently used as the only 
quantitative characteristic of the surface. Correspondingly, there appears to be no mathemati- 
cal way to discriminate between two surfaces with similar fractal dimensions but different 
morphologies. Note that such discrimination is easily achieved by human eye and brain, 
which hints towards the missing link in the expansive attempts to find a relation between the 
fractal morphology of the surface and mechanical properties of the material. 

We present here new results on fractures measured by scanning tunneling microscopy 
(STM) on surfaces in the nanometer scale. These results call into question contradictory 
universal relations found on micron scale. (8,9) The very existence of any such relationship is 
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of paramount  importance. While it is traditional in materials science to search for global 
relations (perhaps in different analytic form for ductile and brittle fracture), the quest in this 
context is usually after correlations between measured quantities and mechanical properties. 
Although many experiments are carried out along these lines, the results are-inconclusive. 
There are strong variations in the value of (, but in many cases there is no apparent 
correlation between its value and material properties. Nevertheless, there is a general 
agreement in the community of materials scientists that the higher the fracture toughness, the 
rougher the fracture surface, which may correspond to higher fractal dimension. However, 
at present this conjecture is yet to be substantiated. From the physicist's point of view, a 
universal fractal behaviour poses a challenge to explain such a fundamental law of nature. 
Since such a universal exponent should be independent of material characteristics then to 
material scientists such a result would mean that ( is not a good quantity to monitor material 
properties. If, however, there are correlations between the roughness exponent (or roughness 
in general) and such properties, then this exponent is a useful tool in the attempts to improve 
materials strength or resistance to fracture. 

One of our main aims here is to clarify this issue by compiling much of the experimental 
data and offering our view as to why this problem is so inherently difficult. Second, we suggest 
a novel method of characterization of  the fracture surface, which employs information on 
the morphology of  the structure beyond the two-point correlations. We believe that our 
morphology descriptor has an advantage in probing surfaces when searching for correlations 
with mechanical properties. 

The outline of the present paper is as follows: We examine the fractal analysis techniques 
employed in fractography (Section 2). A critical review of  the available experimental data is 
given in Section 3. We describe a new method of analyzing correlations in the surface 
structure, ~°'ij) which provides information additional to the fracture dimension (Section 4). 
Finally, we present in Section 5 an analysis of  STM images of fracture surfaces of tungsten 
and graphite studied on the nanometer scale. 

2. TECHNIQUES OF FRACTAL ANALYSIS OF SURFACES 

2.1. Basic Definitions 

In analysis of surface topography one studies the height of the fractured surface, h(r), as 
a function of the two lateral coordinates, r = (x,y) .  The two-point correlation function 
C(r) = (h(0)h(r))(where ( . . . )  stands for a surface average) is usually claimed to be 
represented by a power law for various kinds of  surfaces. Let us first distinguish between a 
self-similar and a self-affine fractal. The former is invariant (statistically for real materials, 
or exactly for exact models) under isotropic dilation, namely when x, y ,h --* 2x, ,~y, )~h, while 
the latter is invariant under anisotropic dilation, namely, if x, y ---, 2x, 2y, then h ~ 2 "h. (11 H 
is the scaling exponent which is always in the range from 0 to 1 (sometimes referred to as 
the fractal codimension). Since most real surfaces scale differently in the plane of fracture and 
in the vertical direction, they are self-affine rather than self-similar. At large distances the 
self-affine fractal would look smooth and its global fractal dimension, Dg, would coincide with 
the Euclidean dimension (e.g. for surfaces Dg ~ 2). Thus for a self-affine fractal the fractal 
dimension D can be defined only locally3 2) 

There are several ways to define the fractal dimension of self-affine fractals. Let us consider, 
for the moment,  the method of vertical sectioning of a rough fractal surface instead of 
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analyzing the surface itself. Such a section has a fractal (self-affine) profile, h(x),  with the 
fractal dimension D', which is related to the fractal dimension of the surface by: (l) 

D ' = D - 1 .  (1) 

There are different definitions of  D' (see eqs (2) and (3) below). These should all result in the 
same numerical value for a self-similar curve, but not for a self-affine one. For  example, if 
we cover the curve with boxes of width bAx and of height bah, the box dimension D' is then 
defined by the scaling relation 

N(b; Ax; Ah) oc b -D', (2) 

where N(b; Ax; Ah) is the number of  boxes needed to cover the curve. For boxes that are 
small compared to the typical range of  heights of the profile, it is possible to derive a 
significant relation between the fractal dimension and the scaling exponent: (2) 

D' = 2 - H. (3) 

For  a one-dimensional profile we can evaluate yet another fractal dimension by applying 
a ruler of  length 6 to measure the length L along the curve. In this way we obtain the so-called 
divider dimension Dd,(2) 

L oz 6 l - od OZ 6 I - I/, (4) 

Therefore the local divider dimension is D d = 1/H while the box dimension for the same 
profile would be 2H. For a self-affine surface H is more suitable a characteristic than D 
because it does not depend on the method of  analysis. In Section 2.2.2 it is shown that H 
coincides with the roughness exponent introduced in Ref. (8). Let us now briefly review the 
methods available to measure this exponent. One should bear in mind that these techniques 
usually assume self-affinity and then go on to exploit certain relational consequences of this 
property when analyzing experimental data. Since it is not at all clear that every fracture is 
self-affine, then results obtained from such analyses should always be checked to validate this 
assumption. 

2.2. Perpendicular Sectioning Method 

Technically this method consists of  taking a vertical section through the fracture surface. 
Usually the cut surface is further polished and then studied in a scanning electron microscope 
or in an optical microscope. The micrographs are digitized and the height profile is extracted 
and analyzed. For  reasons to be detailed later this technique is used for fractal surface analysis 
in spite of  its obvious disadvantage of destroying the sample. There are alternative 
non-destructive methods that can be used instead of  the physical sectioning to provide the 
same information. For  example, the height profile can be recorded using precise profilome- 
ter. ¢8) Unfortunately, a profilometer does not allow to probe down to the micron length scale. 
Another method to measure surface height (I2) is by a line scan of  brightness in the scanning 
electron microscope (SEM). Whether such a scan indeed represents the height profile function 
is yet to be established convincingly, but experimental evidence suggests that this is true. 

Having obtained the function h(x) by any of those methods, it is then analyzed using one 
or more techniques described below to determine the value of either D', Dd or H. The reader 
should note that in principle, there is no reason for h(x) to be single-valued, especially in cases 
of  extensive crack branching observed in some materials. In fact, a multi-valued h(x) can be 
found by vertical sectioning3 TM It should be noted though that only actual cutting can reveal 
such structure, while profilometer (8) or electron microscope °2) would always produce a 
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single-valued function. Clearly, care should be exercised when applying methods based on, 
e.g. Fourier analysis to multi-valued profile functions. 

2.2.1. Profile length measurement 

In most cases the digitizing software provides the means to evaluate the length of the curve 
using rulers of different sizes, 6. From eq. (4) we have for the scaling exponent: 

d log L 
D~ = 1 d log 6 '  (5a) 

H = 1/Dd. (5b) 

The shortest ruler length used in such experimental measurements so far is of the order of 
1/~m. Usually the log L- log 6 plot (the Richardson plot) is only approximately linear/~4~ A 
breakdown of linearity should occur at high values of 6 where the system becomes 
homogeneous. When this happens, the Richardson plot saturates to a horizontal plateau. To 
complicate the issue the length of the profile approaches a finite limit at small 6 as well,/15'16) 
where a microscopic structure of the profile starts to be probed. An increase of magnification 
beyond this scale cannot be related to the self-affinity in the meso-scale. The conjecture ~4) that 
the limit of L (6) for ~ --~ 0 gives a 'real' length of the curve instead of the infinity that is 
expected for the 'ideal' fractal curve could be considered seriously only if applied to the 
profiles recorded on the atomic scale, and not on the scale of microns. 

2.2.2. Pair correlation function and Fourier analysis 

Let us now define some functions that are used in this method. The height autocorrelation 
function, C(x) ,  is: 

C ( x ) =  lira 1 ; ~  L -  o~ Z (h ( x '  + x )  - ( h ) ) ( h  (x ' )  - ( h ) )  d x '  

= l i m  1 In L L ~ ~ Z h (X" + x)h (x ')  dx" - ( h )  2 (6) 
e j  ~ 

where the average height, ( h ) ,  of the profile is given as: 

(h)--- lim 1 .(0 L L-- o~ -L h(x)  dx. (7) 

The pair correlation function, G(x), is defined as: 

lf0'  G(x)  = jimo~ ~ [h(x' + x )  - h(x')] 2 dx ' .  (8) 

Opening brackets in this equation and substituting C(x)  from eq. (6), leads to a simplified 
relation between the pair correlation function and the autocorrelation function: 

a ( x )  = 2(co 2 - C(x))  (9) 

where we define the width of the profile, co, as 

o) 2= C(0) = ((h - (h))2).  (10) 

The fractal dimension can be extracted from the analysis of the behaviour of G(x)  at small 
x. ~3) If in this regime G(x)  follows a power law, 

G(x)  oc x 4-2°', ( l l )  
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then we expect the box dimension to be equal to D'. ~2) Thus we have the following expressions 
for the fractal dimension and for the scaling exponent: 

1 d l o g  G(x) 1 d l o g [ C ( 0 )  - C ( x ) ]  
= 2 - , (12a) 

D ' = 2  2 d l o g x  2 d l o g x  

H = 2 - D'. (12b) 

Equation (11) holds only on scales smaller than the correlation length in the direction parallel 
to the surface. At longer distances the log-log plot saturates as shown below. 

Though the autocorrelation function can itself be measured and analyzed in order to derive 
the value of H according to eq. (12b), it is common to use its Fourier transform, h( f ) ,  or 
the power spectrum, p ( f ) ,  of the profile: 

h ( f )  = f h (x) exp(ixf ) dx, (13a) 

p(f) = I h ( f ) l  2 = ~C(x)exp(ixf) dx. (13b) 

From the scaling behaviour of the autocorrelation function for small x it is then possible to 
derive the asymptotic behaviour of the power spectrum at infinity: 

p ( f )  oc f21)'- 5, (14a) 

which can be recast in the form: 

5 1 d l o g p ( f )  (14b) 
D ' = ~ 4  2 d l o g f  

The value of H is then given by eq. (12b). 
The power spectrum determined experimentally is usually strongly affected by statistical 

fluctuations that introduce significant error in the value of the fractal dimension. To reduce 
these fluctuations it was proposed to analyze the integrated power spectrum, ~4) P ( f ) ,  defined 
a s  

P ( f  ) = . f ;  p ( f  ")df '. (15) 

For frequencies higher than the inverse of the correlation length the power law behaviour 
gives: 

1 d l o g  P ( f )  
D' = 2 +  (16) 

2 d logf  

A simple formula relates the scaling properties of the power spectrum with the scaling of 
roughness, co. To derive this relation we take the inverse Fourier transform of eq. (13b) and 
evaluate C(x = 0): 

o9 2 = C(O) = p ( f ) d f  ~- Jmin'g'2D'- 4. (17) 
dfrnin 

The length of measurement is finite L0, supplying a lower limit fmi. = 2n/Lo tO the integral, 
which plays an essential role hereJ 2) Substituting this lowest spatial frequency into eq. (17) 
we obtain for the roughness scaling: 

o9 oc L02-a' oc Lo n. (18) 
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2.2.3. The return probability histogram 

Yet another method of  analysis of  the height profile has been suggested recently by M~loy 
et al. ~8~ They evaluate the return probability histogram, R(A), which is the probability for a 
height y appearing at a given position x to reappear for the first time at a position x + A, 
averaged over all x. This probability is related to the chord length distribution and it scales 
as~ 

R(A) oc A H-2 oc A -zy, (19a) 

d log R (A) 
D' = (19b) 

d log A 

The return probability histogram may be easier to calculate, for a given profile h(x), than 
the Fourier transform, but the method seems to have some drawbacks. We will discuss this 
issue when describing our experimental results in Section 5. 

2.2.4. The variation method 

This technique has been recently suggested by Dubuc et al. 07) They demonstrated that this 
method was more accurate than any other technique of  the fractal analysis of  self-affine 
curves, at least when applied to few analytically constructed profiles with a predetermined 
fractal dimension. This test has been carried out in Ref. (17) for D' in the range 1.4 to 1.6, 
which is higher than the values observed for fracture surfaces. Further testing ~8) has 
shown that the variation method estimates accurately the fractal dimension of  the 
Weierstrass-Mandelbrot function when D' is in the interval 1 to 1.6. 

The method relies on the following properties of a fractal function h(x): it should be 
continuous and almost nowhere differentiable. As an illustration of  the underlying idea let 
us consider a straight line connecting two points on the curve, (x, h(x)) and (x', h(x')). The 
upper limit of  the absolute value of  the slope of  this line is infinite when x '  tends towards 
x, and the rate of  this infinite growth is determined by the fractal dimension of  the curve. 
The analysis is carried out as follows: Let us introduce a E-oscillation, v (x, E), according to 
the following definition: 

v(x, e) = max h(x') - min h(x'), Ix' - xl < c, (20) 

and define the integral (termed the E-variation) V(E): 

V(e) = .fL. v(x, E) dx. (21) 

The limit of  V(E) for E ~ 0 is zero due to the continuity of the function h(x). But the rate 
at which V(E) scales when E ~ 0 is: °7) 

V(E) oc E z-D', (22) 

which provides another way to calculate D'. The fractal variation analysis can be interpreted 
as a numerical technique of  box counting, t~8) Detailed description of the method including 
computational algorithm can be found in Ref. (17). 

2.3. Slit Island Method (SIM) 

With this technique, suggested by Mandelbrot et al., ~4) one analyzes horizontal sections of 
the fracture surface. The surface to be probed is covered with a thin layer of a material with 
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different optical reflectivity. A subsequent polishing reveals islands of the main material that 
grow and merge as polishing progresses deeper. Applying this procedure to isotropic surfaces 
produces self-similar patterns since all in-plane directions are equivalent. Therefore this 
approach has the advantage of having an unambiguous definition of the fractal dimension. 
Its value is D' = D -- 1 since the pattern is created by sectioning a surface with dimension 
D > 2 with a two-dimensional planeJ 2) The fractal dimension D is derived from the scaling 
behaviour of the 'coastlines', Dcoast,  via D = Dcoas t -'[- 1. This relation reflects the simple fact 
that the fractal surface is sectioned by a Euclidean plane. Comparing with eq. (1), this relation 
also indicates that Dco,s t = D'. 

Theset  of coastlines obtained in these parallel sections can be analyzed in two ways. First, 
the divider dimension can be found from the measurement of the perimeter, ~ ,  with different 
rulers, 6: 

oc 6 I- ad, (23a) 

d log 
Dd = 1 d log 6 " (23b) 

The use of eq. (23a) seems somewhat superior to eq. (5a) although they look similar. The 
difference is that now the self-similar curve is analyzed and not the self-affine one. Note that 
the scaling exponent, H, is now given by eq. (12b) rather than by eq. (5b). 

Another way of using SIM is to apply the perimeter-area scaling relationship to 
coastlines. (4) When the area, d ,  and the perimeter, ~ ,  are measured for a set of 'islands' using 
the same ruler length, we have for the self-similar curve: 

~¢ oc ~2/D,, (24a) 

2 d log D' = ~ ]--~-g.~. (24b) 

A wrong form of the perimeter-area relationship, ~¢ oc ~D', can be found quite often in 
the literature, e.g. Refs (19) to (22). This was probably inspired by a misprint in Ref. (4) 
where Mandelbrot et al. used the correct relations (24a,b) for their fractal analysis, but 
erroneously quoted D', rather than D'/2, for the slope of  the curve of log ~ vs. log d .  As 
a consequence of this conclusion, Ray et al. (2°) found that D increases with toughness. We 
have re-analyzed their data with the proper form of eq. (24) and found that D decreases with 
toughness. 

There exists some controversy related to the use of the perimeter-area relation for the 
fractal analysis of real surfaces. The problem is in the dependence of both ~ and d on the 
ruler length, 6. In principle, eq. (24) holds only in the limit of small 3. At intermediate values 
of  6 the measured perimeter becomes affected by the regular part of the coastline present in 
the image. (2"5'6) It is not clear whether the dependence of D on 6 in this method has a physical 
origin, or whether it is an artifact of the measurement technique. This raises doubts regarding 
the validity of the limiting value of D observed at very small 3. In most cases, however, the 
results obtained with small enough rulers agree with the data obtained by other methods. The 
most controversial result, using small rulers, shows that D increases with the fracture 
toughness, while the opposite tendency emerges from using bigger rulers. (5'23) We will 
comment on these findings in Section 3. 

There is an advantage in using eq. (24) when compared to the perimeter-ruler length 
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relation, eq. (23). In the latter case the value of  Dd--1 is measured which has a high 
relative error for D d~  1. This means that the curve of l o g ~  vs. log6 has a very 
moderate slope and any noise or non-linearity would make accurate measurements difficult. 
The plot of  log ~ - l o g  s~¢ behaves much better and usually has an easily identifiable 
linear part. 

A recent development in SIM involves a particular form of computer analysis, which allows 
for using this method non-destructively. For  example, Nogu6s et al. ~24) used three-dimensional 
STM images to perform such an analysis. It is convenient to think of this method as of filling 
an imaginary three-dimensional relief with water up to different levels and then examining 
the coastline of the obtained islands. This method suffers at present from the too coarse grid 
used by commercial STM (e.g. 256 × 256 pixels), which means that the ruler length cannot 
be reduced to sufficiently small sizes. This is a serious limitation as long as the question of 
the importance of the ruler length in the perimeter-area analysis is still unresolved. However, 
as high resolution imaging with long scans becomes attainable, the advantage of being 
non-destructive would probably tip the scales in favour of this technique. 

The coastlines analyzed by SIM can be considered as either islands within lakes, or as lakes 
within islands. In the context of fracture there are always two corresponding surfaces, which 
are both available, in principle, for scrutiny. It is noteworthy that in purely brittle fracture 
the islands on a sectioned image of  one surface should match exactly the lakes on the 
corresponding section of  the other surface. In ductile material with void coalescence, on the 
other hand, the lakes on one surface match the lakes on the corresponding surface, as has 
been found in fractured steel. ~25'26) The latter phenomenon can also be observed when fracture 
is accompanied by relaxational processes. Thus it is important to determine in what class of 
processes does the fracture fall before analyzing and comparing the two surfaces. Usually, 
being in different classes also results in different toughness characterizations. Moreover, the 
standard 'islands within lakes' interpretation ") can give values of D that are different from 
those obtained when the 'lakes within islands' approach is assumed. This indeed seems to be 
the case for the fractured ductile steel studied in Ref. (25). There the difference in the 
roughness exponent, calculated using these two interpretations, was shown to increase as a 
function of material toughness and indeed to vanish for brittle fracture. In that particular 
study, the two ways of analysis even give an opposite dependence of  D on the toughness. This 
demonstrates that it is important to adopt the standard 'islands within lakes' choice for 
analyzing the surface. 

A final comment is in order regarding the background subtraction, which is usually done 
before carrying out any kind of numerical analysis. This step would not be necessary if an 
infinitely small ruler could be used. But with a finite ruler length and with a macroscopic tilt 
of  the image one effectively introduces a regular component that can affect measured fractal 
properties. In our opinion, the least ambiguous technique is to subtract the least square fitted 
plane (a straight line for a profile) from the image. We show in the Appendix that this 
minimizes the roughness defined by eq. (10), and so allows to treat only the inherent fractal 
structure of  the profile. In quite a few studies the linear background is taken as the line 
connecting the first and the last point of  the profile (e.g. Ref. (8)). Although it need not change 
the results significantly, this nevertheless seems to be a rather arbitrary choice. This 
arbitrariness can be altogether obviated by using the cosine Fourier transform for the 
spectrum instead of  the complex Fourier transform. For methods not based on spectral 
analysis there is no good reason for such a choice of the background. It should be mentioned 
though that there is a disadvantage in tilting the entire plane because particular cuts through 
the surface may still retain a nonzero average slope after the tilt. 
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2.4. Direct Surface Area Measurement 

An alternative technique for fractal analysis of surfaces has been developed very recently 
and applied to two different experimental methods327'28) The underlying idea is to generalize 
the divider method to two-dimensional objects. Instead of studying scaling behaviour of the 
profiles obtained in the surface section, Denley ~27) and Friel and Pande ~zS) analyzed directly 
the dependence of the area of the fractured surface on the length scale. The following scaling 
relationship should hold for a self-affine surface in the limit of 6 --~ 0: 

S=S062 o. (25) 

This relation resembles eq. (5a), but 6 is now the length of the side of the elementary square 
used for coverage in the area measurement. The roughness exponent is given as H = 1/(D - 1) 
because D in eq. (25) is the divider dimension32) Equation (25) has been considered by many 
authors as an appealing alternative to traditional methods based on the profile analysis, but 
so far has not found a wide application due to the experimental difficulties in measuring the 
area.(12,15) 

In Ref. (27) this measurement was carried out by integrating the area of the surface of the 
STM image that was recorded on the square grid of pixels. This procedure was repeated for 
the data considered at points with varying spacings thus producing the S (6) plot. More 
recently Friel and Pande combined this method of analysis with the stereoscopic SEM 
imaging328) The basic idea is to compare SEM images recorded at two different tilt angles 
of the electron beam. The main computational problem is to identify corresponding points 
in a pair of stereo images, and this can be overcome by using modern image analysis software. 

These two methods, STM and stereographic SEM, seem to be unique in that they can 
provide with sufficient accuracy a true morphology. Moreover, they complement each other 
with respect to the length scale. STM usually has 10 #m as the highest scan range available, 
while SEM starts imaging from approximately 1/~m going up to 100 ktm. We will discuss later 
serious limitations imposed by the current state of the development of these microscopies. 
However, we believe that the future of the analysis of surfaces belongs to such non-destructive 
methods capable of capturing a three-dimensional surface image. Implementation of these 
techniques should not be confined to area scaling analysis, because any other method can be 
applied once the surface image is obtained. In particular, we will illustrate in Section 5 an 
application of the higher-order correlations analysis performed using STM images. 

2.5. Determination of  Scaling from Measurement of Non-Structural Properties 

Another approach to the fractal analysis consists of studying the dependence of certain 
non-structural properties on the surface geometry. For example, scattering experiments 
measure the structure factor, S(q), which is related to the Fourier transform of the height 
correlation function. Consequently, power law scaling can be expected for S(q) for fractal 
objects, as has been indeed observed in studies of colloidal aggregates329) 

The roughness of the surface influences chemical and electrochemical processes that take 
place in the near-surface layer. It can be shown that there is an exact mapping in the 
mathematical formulation between the DC electrical response of an electrode, the diffusive 
response of a membrane, and the steady state yield of a heterogeneous catalyst33°) Using this 
mapping the fractal nature of fracture surfaces has been recently probed electrochemically 
by studying the dependence of the Faradaic current in the diffusion limited process on the 
surface area. ~31) For this experiment an electrochemically inert electrode is immersed into an 
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electrolyte containing some inert salt of  high concentration and an electroactive substance 
of low concentration. A golden replica of  the fracture surface is then used as the electrode. 

For  a simple planar case the direct current in this experiment is proportional to t - ~/2, where 
t is time, and to the diffusion front area, A. This particular time dependence follows from 
the fact that the charge passing through the interface corresponds to the number of 
electroactive species in the diffusion layer of thickness A oc (~t)~/2, where ~ is the diffusion 
coefficient in the medium with the rough boundary. With time, this layer becomes thicker and 
the surface area changes. The diffusion layer width can be regarded as a time-dependent 
length of the ruler that is used to measure the area of  the fractal surface. The Cottrell 
equation ~3~) for the current, 

) U~ A(t lA 
I oc A (t oc - - ,  (26) 

t 

can be reformulated in terms of the volume, V(A), located within a distance A from the fractal 
surface:~ 30) 

V ( A )  A 3 o 
I oc - -  ~: - -  oct  0-  m/2 (27) 

t t 

Here we have used the above mentioned dependence, A < t ~/2, and the fractal scaling of the 
volume as determined by the exterior Minkowski-Bougiland dimension, D. This dimension 
is defined through the volume, VE, which lies within a small distance E of the electrode, 

( ' n ~  ) 
D = l i m  3 1-n~- , E---,0.  (28) 

The same experimental arrangement can be used for AC measurements of the frequency 
dependency of the admittance, Y. From arguments similar to those given above but with 
A ~: (~/~o) 1/2, we have: (3°) 

D - I  
y ~: ~o --y-. (29) 

The method has certain experimental limitations which become obvious when one 
compares the ideal situation described above with real measurements. The most important 
requirement is to have zero solution resistance which ensures that the volume of electrolyte 
is equipotential. Otherwise the response of the electrolyte to the potential drop at the surface 
cannot be easily related to the local (fractal) properties of the interface. Another problem is 
that since the replica method cannot reproduce the fine structure of the original surface, it 
is likely to reduce the regime over which the scaling can be measured. To test this issue we 
suggest that an analysis of both matrix and replica be carried out with conventional imaging 
to establish their equivalence. 

3. EXPERIMENTAL DATA ON FRACTAL CHARACTERISTICS OF FRACTURE SURFACES 

3.1. Why is the Fracture Surface Fractal? How Universal is this Feature? 

The concept of  fractals when applied to fracture is useful not merely as another method 
for describing the surface morphology but as a possible lead to a better understanding of the 
underlying differences between fractures. In particular two questions seem pertinent. Why is 
the fracture surface expected to be fractal? What is the relation between fracture surface 
characteristics and material properties? 
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There seem to be good reasons for the surface to have fractal scaling, although these 
reasons may differ for different kinds of  fracture. For  slow brittle fracture (brittle intergran- 
ular, transgranular cleavage) a simple calculation of  the stress field shows that the moving- 
boundary problem has scale invariant solutions that couple very strongly to the inherent 
instability of  the cracking process and produce self-similar patterns. (32) The situation is 
equivalent to many scalar free-boundary problems such as dendritic solidification, viscous 
fingering, diffusion limited aggregation, electrodeposition, etc. In the case of  a slowly 
propagating crack the resulting pattern is more complex than in those scalar growth problems 
due to the tensorial nature of the stress field. Nevertheless, there is a strong qualitative 
similarity between the different processes. For  a dynamical crack propagation (namely, when 
the propagation rate is a substantial fraction of the Rayleigh wave speed), the process very 
much resembles breakdown processes in dielectric media, which is known to produce fractal 
trajectories. The similarity in the formulation of  the problem thus suggests that we may expect 
fractal features in the resulting fracture surfaces too. 

From another point of view, the growth of  the brittle crack can be considered as a process 
of  the energy transfer from the macroscopic level to the microscopic one with its final release 
at the crack tip. In this case the fractal dimension of the fracture structure is shown to be 
related to the radial scaling of the stress at the crack tip and to the intensity of the energy 
dissipation. (33~ 

In ductile materials the fracture propagates as a result of  the formation, growth and 
coalescence of  microvoids near the crack tip. This process is not understood currently well 
enough. Nevertheless, some analogies have been drawn between this process and the 
percolation problem (1,34), which also leads to a fractal pattern. 

Ductile fracture of metals is always preceded by a certain amount  of plastic deformation. 
There are currently both experimental (34 36) and theoretical (37~ evidences in favour of the fractal 
character of the plastic slip. The slip line patterns on the surface of deformed sample reflect 
cooperative motion of interacting dislocations that might involve self-organization to some 
degree. The fractal analysis can be easily applied to a system of parallel slip lines. A straight 
line drawn perpendicular to the lines generates a set of points that can be studied using either 
box counting method, the yardstick method, or the gap distribution analysis. (35~ The fractal 
dimension of  such sets has been found to be 0.45 _ 0.10 for coarse slip of  a copper single 
crystal; (35~ 0.30 _ 0.15 for fine slip of  a cobalt single crystal; (35~ 0.49 _ 0.03 for a fine slip of  
a cadmium single crystal335~ All these results refer to the length scale from 60 to 2000 nm. 
The discontinuity of  plastic deformation can be observed in the stress-strain curve recorded 
at very low temperature. It has been shown that, for example, austenitic steels tested at 4 K 
exhibit serrated stress-strain characteristics and a discontinuous pattern of temperature 
growth. (37~ The distribution of  the temperature growth reflects the spatial distribution of the 
slip process, and analysis finds a fractal dimension of  0.7 for this structure. This value is close 
to that of the dyadic Cantor set (0.63), which is why it has been speculated that work 
hardening leads to redistribution of microscopic necking under tension in a way that is similar 
to the procedure involved in the construction of  the Cantor set. (37~ Phenomenological 
modeling using a cellular-automaton approach suggests that work hardening should result 
in a low fractal dimension of  the set of  slip lines equal to 0.25 ___ 0.10. Work softening, on 
the other hand, should produce higher values of  order 0.45 ___ 0.103 a8~ 

Thus it seems that in either fracture mode, dynamical process of material failure leads to 
patterns with statistics that depend on the very general parameters, such as the dimension 
of  space, rather than on the microstructure. This may imply that the structure of fracture 
surfaces is universal, and in fact it has been conjectured recently that there is a universal value 
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of H, around 0.80 for ductile fracture o~ and 0.87 for brittle fracture. (8~ This, however, 
contradicts any idea of  correlation between H and the fracture toughness because a 'universal' 
value denies any dependence of  the fracture characteristics on specific material properties. 
Statistical analyses of  a large body of  existing data for a variety of materials is given below 
which indicates that the value of  H actually lies in a wide interval from 0.6 to 1.0. This scatter 
in the exponent is far too high for any universality hypothesis to account for. Malay et al. ~8~ 

supported their conjecture on the universal value of  H by comparing several measurements 
with the results from a computer experiment (39) that produced H = 0.7 for a two-dimensional 
model with a few different types of  bonding disorder. There are several problems with such 
a bold conjecture: (i) It is difficult to apply results of  two-dimensional simulations to the 
three-dimensional experiment data; (ii) There exist many other models that simulate fracture, 
each capturing certain essential features of  the real process, and it appears that the results 
of these simulations are strongly model-dependent. Indeed, results for simulated fractures 
result in a value of H that spans the entire range from 0.3 to 1.037) Thus, at present, it is 
difficult to see how the computer modeling results can be used to support the universality 
hypothesis. 

It has been suggested by different authors that fracture may proceed along so-called 
minimal surfaceJ 4°'41) Such a surface corresponds to a global minimum of the fracture energy 
that is achieved by optimizing the direction of  the crack growth at each time step. When 
applied to porous or composite materials such a surface simply minimizes the intersection 
area with the matrix34°) The minimal surface was shown to be self-affine with a roughness 
exponent estimated as 0.50 + 0.0834~) This value is significantly lower than the suggested 
universal exponent. ~8'9'~3) However, this value of  H may suggest that in this model the crack 
should follow a Brownian path which is known to yield H = 1/2 exactly. Bouchard et al. '~3~ 

have suggested recently that the minimal surface cannot be reached dynamically, at least on 
a macroscopic or mesoscopic structural level. If so then the fracture surface available for 
examination is determined by kinetic processes rather than by equilibrium energetics of 
fracture. 

In the following two subsections we give a review of  existing data on fractal properties of 
brittle and ductile fracture surfaces. 

3.2. Brittle Fracture 

Most of  the results given in this subsection refer to ceramic materials, while the rest of the 
data concerns brittle and quasibrittle fracture of  metals (low temperature or stress corrosion 
cracks). It is well established that the surface around the fracture-initiating brittle crack can 
be divided into regions with qualitatively different morphology. ~42 44) The first relatively 
smooth growth region (mirror) is followed by increasingly coarser zones (mist and hackle). 
This pattern ends with a macroscopic crack branching region. ~42) The traditional metallo- 
graphic data tended to analyze the entire surface, lumping together information from all 
regions, and therefore inevitably obscuring any distinction between them. Reports of separate 
analyses on different zones are very rare. ~43'44) 

3.2.1. Ceramics and glasses 

Tsai and Mecholsky ~43) studied the fracture surface of  single-crystal silicon using the SIM 
technique and eq. (23) for the perimeter-ruler scaling. A controlled flaw (hardness indent) 
was introduced on either (100) or (110) surface of the sample that was subsequently fractured 
in bending so that the flaw was on the tensile side. The accuracy of the fractal analysis should 
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be quite low as the ruler lengths used in that study ranged in a very short interval, from 10 
to 120 p m. Separate data are reported for the mirror region (smooth), crack branching region 
(rough) and post-branching region (again smooth). They found that H was 0.90 + 0.04 in the 
branching region on (100) surface and 0.96 + 0.04 on (110) surface. The roughness exponent 
for both mirror and post-branching region was 0.99 _+ 0.01, thus confirming existence of a 
non-fractal Euclidean geometry. 

Langford et al. ~44) used STM images with scan sizes that ranged from 25 to 260 nm to 
analyze the fracture surface of MgO. The minimum length step was approximately 0.4 nm. 
They used both power spectrum analysis with eq. (14) and box counting using eq. (2). The 
latter method should be more reliable in their measurement because the one-dimensional 
Fourier analysis was carried out only on 256 point grid, introducing a very large error. The 
least squares fitted plane has been subtracted before the fractal analysis was carried out in 
order to correct for macroscopic tilt. The sample was fractured in the three-point bending 
test and separate sets of data were given for the structure of tensile and compressive sides 
of the specimen. Both methods of analysis gave a value of H = 0.6 + 0.1 for the tensile side. 
It was impossible to distinguish within the experimental error between the values of H for 
the smooth mirror region and for the crack branching zone. On the compressive side few 
regions were found with the same scaling as on the tensile side. However, a number of images 
taken on the compressive side have shown a non-fractal behaviour. 

Mecholsky et al. ~45) studied surfaces of six kinds of alumina and of five glass-ceramics (zinc 
silicates and lithia borosilicate) by employing a variety of techniques. They applied SIM with 
the ruler length from 0.4 to 100 #m by using eq. (24) for the perimeter-area scaling, and also 
by Fourier analysis using eq. (16) for the integrated power spectrum scaling. All methods gave 
consistent values of H = 0.77 _ 0.08 for alumina and 0.88 _+ 0.06 for glass-ceramics. They 
found no systematic dependence of D on the ruler length in SIM analysis contrary to the data 
of Lung and coworkers for steels. ~s'23) They fitted the relation between D and the critical stress 
intensity factor, K~c, with the form: 

K~c = Ko + Ea~/2 (D' - 1) 1/2, (30) 

where K0 is the value of K~c for the hypothetical material with the smooth fracture surface, 
E is Young modulus, and a0 is a parameter that has units of length. It has been argued (45'46) 
that this parameter can be interpreted as the characteristic dimension of the fracture zone 
around a crack tip. 

Relation (30) was used by Mecholsky and Freiman ~42) to discuss a connection between the 
value of D and the radii, rj, of the different regions of the fracture surface as defined above. 
They have conjectured a relation of the form rj oc 1/(D - 2), although this is to be taken 
cautiously in view of the poor data statistics. The values of H in Ref. (42) are 0.91 for 
borosilicate glass and for calcium aluminosilicate glass; 0.88 for (100) surface of silicon; 0.83 
for pyroceram 9606 and for ZnS; 0.80 for partially stabilized zirconia; 0.78 for cobalt-bonded 
WC composites; 0.67 for alumina and for ZnSe. All these results were obtained by SIM using 
eq. (23) for the perimeter-ruler scaling. Details of the measurement procedure for borosilicate 
and calcium aluminosilicate glasses are given in Ref. (46). Polishing these glasses resulted in 
their fragmentation, and therefore a double replication technique was used. Scanning electron 
microscopy confirmed that structural features bigger than 5/~m were preserved during the 
preparation of the positive replica. This study is questionable not due to the replication 
procedure, but rather because the authors used too small a range of ruler lengths, from 6 to 
40 #m. It is very difficult to support existence of scaling by studying less than one decade in 
length scales. Therefore the authors' conclusions (42'46) regarding existence of a connection 
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between the radii in the mirror zone and the fractal dimension cannot be substantiated by 
their results and requires further investigation. 

A rather puzzling result was reported by Mitchell and Bonnell from the STM investigation 
of silicon single crystal fractured on the (111) cleavage plane. (47) Statistically reliable profiles 
were acquired with a step of  approximately 0.3 nm and a total scan length of 1000 steps. The 
value of  H was estimated from the integrated spectrum P(f) ,  eq. (16), to be equal to 
0.93 _+ 0.07. However, when we have tried to calculate H using the plot given in that paper 
f o r p ( f )  by using eq. (14) we find that H = 0.31. This discrepancy, which cannot be reconciled 
by any error bars, is not addressed by the authors, and it is possible that there exists some 
error in their numerical procedure. This is most unfortunate because this case is one of the 
very few studies in the nanometer scale, which is so far the least studied length scale. 

Mecholsky and Mackin applied the SIM using both eqs (23) and (24) to study fracture 
surfaces of  a naturally occurring silicate (flint). ~48~ Relation (30) was corroborated, indicating 
that rougher surfaces correspond to higher material's resistance to fracture. The value of H 
has been found to be 0.85 for brittle transgranular fracture, 0.75 for mixed transgranular and 
intergranular fracture and 0.68 for intergranular rupture. 

Baran eta/. (49) carried out mechanical profilometry of the fracture surface of three dental 
porcelains and of  experimental glass P2V25. A 2 mm length of the profile was surveyed with 
2 #m  ruler length. The variation method was used to calculate fractal dimension, see Section 
2.2.4. No mirror or mist regions were found on the surface of any material, probably due to 
the presence of precipitate particles in all cases. The roughness exponent was 0.93 _+ 0.04 tor 
the glass fracture surface, and it varied from 0.67 to 0.84 for porcelains. Their results indicate 
that Klc decreases slightly when D increases, opposite to other reports concerning brittle 
materials. However, this effect is too small compared to experimental errors and hence may 
not be indicative. Scaling of the e-variation as described by eq. (22) was observed over not 
more than one decade in case of porcelains, and thus the error in D should be not less than 
0.1, which casts some doubts on whether the fractal description is useful at all for this analysis. 

Miller and Reifenberger I~8) applied the variation method to analyze STM images of a 
fractured carbon surface. The surface was prepared by shattering a rod made of a 
medium-grain carbon. One-dimensional scans consisting of 2048 points were recorded with 
the total scan lengths that varied from 0.5 to 5 #m. Individual scans exhibited nicely linear 
plots corresponding to eq. (22) in logarithmic coordinates with scaling showing over nearly 
two decades. However, there is a substantial scatter in the measured values of the roughness 
exponent depending on the scan direction and its length. Low-resolution images with 1-5 I~ m 
scan size produced H from 0.44 to 0.50 which is substantially lower than results reported in 
the micron range using other methods. Two-dimensional version of the variation method has 
been applied to 128 x 128 images to yield H = 0.43 in agreement with data from one-dimen- 
sional profile analysis. The roughness exponent for scans shorter than 1 #m was found to be 
substantially higher, from 0.65 to 0.84, and to increase systematically as the scan size 
decreases. This increase of H may be attributed to the fact that STM approaches the atomic 
resolution, cutting off the fractal behaviour. Alternatively, the effect may be explained by the 
influence of  noise which becomes more important on a shorter length scale as we have found 
in our study (Section 5). A third possibility for the origin of this effect may be that at higher 
magnification results are distorted by the convolution of  the true profile with the shape of 
the STM tip. 

Lin and Lai (5°~ measured the fractal dimension of fractured surfaces in a series of carbon 
fibre-reinforced composites with different fibre contents. They used SIM and found scaling 
within the area-perimeter relation in the range from 5 to 100/~m. The fracture process was 
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cleavage of polyether sulphon (PES-C) matrix accompanied by localized plastic deformation 
near the fibre-matrix interface. The roughness exponent can be derived from these results to 
range from 0.62 to 0.90. In this study a systematic decrease in the fracture toughness is 
observed with increasing fractal dimension. However, this dependence is found to be weak 
and amounts to 26% drop in Kic when D' increases by 0.3. 

Fractal character of crack propagation in epoxy and epoxy composites has been studied 
in detail by Ma Zhenyi e t  al.  ~5~) Notched samples of Epon 828-Z epoxy with different 
concentrations of alumina filler were fractured in tensile loading in a vacuum chamber. The 
photon emission signals were recorded during fracture, and optical and electron microscopy 
were used in a subsequent study of the fracture surface. The photon emission intensity as a 
function of time was found to be characteristic of deterministic chaos rather than Markovian. 
Observations on the microscopic level support the idea that fracture in all cases was due to 
crack propagation in the epoxy matrix and has no interfacial component which may 
correspond to fracture of alumina particles. Assuming that the photon emission signal is 
caused by bond breaking and possibly by the recombination of defects created by this process, 
these results suggest that the crack growth can be characterized by dynamics that lead to a 
fractal structure. Further examination of the surfaces using SIM and the area-perimeter 
scaling produced linear plots in logarithmic coordinates with the roughness exponent of 
0.75 + 0.05. In our opinion the system studied in this work may be useful for testing 
predictions of the theoretical models upon. (7) This is so because in this case there exists 
information on both the dynamics of the crack growth and on the fractal structure of the 
resulting surface. Moreover, the fracture process is described by bond breaking, while 
atomistic fracture of metals requires more sophisticated modeling. 

M~loy e t  al. reported values of H for several different materials: 0.90 for graphite, 0.75 for 
porcelain, 0.86 for Bakelite and 0.95 for plaster of Paris39~ The samples with the crack- 
initiating notch were broken in shear. The fractal analysis of the profilometry data was 
performed using eq. (21) for the power spectrum and eq. (19) for the return probability 
histogram (or chord length distribution). The analyzed profiles were recorded in steps of 
25 ktm on a total length comprising of 256 steps. The two methods produced roughly similar 
results with an estimated accuracy of 10% in each case. The linear part of the logarithmic 
plot of the power spectrum was significantly longer than that of the return probability 
histogram. In fact for some materials the return probability histogram implied scaling on less 
than one decade. We will return below to the issue of the range of scales over which the 
fracture surface is expected to be fractal. 

Brandt and Prokopski ~52) studied Mode II fracture of a family of concretes and analyzed 
the profile length scaling using the vertical sectioning method applied to surface replicas. They 
found H = 0.95 + 0.01 from the scaling analysis in the ruler length from 30 to 500/~m. Within 
this narrow interval for H there was found a trend towards higher fractal dimension for 
specimens with higher fracture toughness. The slightly lower value of H = 0.91 _+ 0.02 is given 
by Saouma e t  a/. ~53) for a number of ordinary concretes fractured in uniaxial compression. 
These authors did not find any correlation between D and material properties. 

Kumar e t  al. ~54~ presented results on power spectrum analysis of in s i t u  apertures of intact 
rock fractures. The aperture profile was determined as a difference between the profiles of 
two walls separated by the crack. The scaling was observed over nearly two decades and it 
is characterized with H = 0.72 + 0.08. However, one should keep in mind that these values 
are not directly comparable to other results in this review, since the rock fracture surfaces 
were subject to erosion next to the cracking process. 

Finally we would like to mention recent results of Kert6sz (55) who has carried out 
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experimental fractal analysis of the two-dimensional fracture. His unconventional experiment 
involved tearing paper sheets in the standard tensile testing machine and studying the fracture 
lines. The width of the profile was analyzed directly, and the roughness exponent was 
determined ~ ing  eq. (18). The resulting values of H for different types of paper were all in 
the range from 0.63 to 0.72 in agreement with the results of 2D modelling37) 

3.2.2. Meta l s  and alloys 

Under most circumstances metals are considered to be ductile materials but they can also 
exhibit brittle or quasibrittle behaviour given the right conditions. In fact, a well-known 
phenomenon is the ductile-brittle transition observed in nearly any metal at low tempera- 
tures. This transition is caused by different temperature dependencies of the strength and the 
yield stress356) Thus it is often possible to study brittle fracture of a normally ductile metal 
by testing it at low temperature (e.g. by immersing the metal in liquid nitrogen). For a number 
of metals the value of the transition temperature, Tab, is higher than room temperature. The 
most common examples would be steel, when it is subject to corrosion, or intermetallic 
compounds. Brittle fracture processes in metals can be categorized by considering separately 
transgranular cleavage, intergranular brittle failure or quasicleavage3 ~4) A very important 
question is whether these different fracture processes can result in different roughness 
characteristics. For example, since one of the holy grails is to relate the roughness features 
to materials' properties, then dependence of the roughness features on parameters other than 
such properties is an extremely significant information. As we show below, the experimental 
accuracy is usually not sufficiently high to distinguish between the effects of the different 
fracture processes. Clarification of this point is further complicated by the lack of sufficient 
information in the literature on the mode of fracture of the material under analysis. 

Dauskardt et al. 04) presented perhaps the best documented study of the fractal character 
of steel fracture surfaces under different testing conditions. They used the vertical sectioning 
method and eq. (5a) for the profile length scaling to find Dd. The step size was in the range 
from 0.7 #m to 2 mm. The results were analyzed in terms of Dd (see Section 2.2), so we have 
used eq. (5) to convert the values of Dd from Ref. (14) into a set of roughness exponents, 
H. We review now briefly the results of Dauskardt et al. for different modes of brittle fracture. 

Transgranular cleavage was measured after impact fracturing of Charpy V-notch specimens 
of an AISI 1008 mild steel at the liquid nitrogen temperature. The resulting log L- log 6 plot 
can be best described as inverse sigmoidal curve ~LS) though an attempt was made in that work 
to also represent it as two linear parts with the crossover at go "~ 10 #m. The main linear part 
at 6 > go gave H = 0.93 + 0.02, and 6 was in this case of the order of grain size. At smaller 
values of ~ comparable with the distance between cleavage steps H was found to be 
0.98 _+ 0.02. 

Fracture of a 31 wt.% Mn-steel at liquid nitrogen temperature resulted in brittle inter- 
granular cracking. The log L- log  6 plot had again an inverse sigmoidal shape which was 
rather optimistically interpreted as a superposition of three linear parts. These parts were 
characterized with values of H = 0.79 _+ 0.02 for ~ > 35/tm, 0.92 _+ 0.02 for intermediate 
values of 3, and 0.94 _+ 0.02 for 6 < 5/~m. An attempt was made to relate the different 
length scales to the average distance between typical structural elements, but the linear 
decomposition of the original plot seems to introduce too large an error to be convincing. 

A case of quasicleavage mode was illustrated by Dauskardt et al. by fracturing a low alloy 
ASTM A533B steel at liquid nitrogen temperature, in as-received and hydrogen-charged 
conditions. (~4) A pronounced linear part was found for l # m < 6  < 100/~m with 
H = 0.91 +__ 0.02, the error refers to the difference between the uncharged and hydrogen 
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charged conditions. The regime 100 #m < ~ < 1000 p m  was fitted with a roughness exponent 
of H = 0.97 + 0.02. Dauskardt e t  al. then concluded that the fractal behaviour is different 
on different length scales, and that the crossover point correlates with the typical microstruc- 
tural parameters. This observation can be of  significance in that it can potentially make a 
dent in the hypothesis of the existence of  a universal value of H/8) However, the experimental 
data in Ref. (14) can be also interpreted as a simple non-fractal behaviour. So instead of 
questioning universality, this may in fact call into question the very existence of scale 
invariance. Preliminary results suggest that studies of these surfaces using the new method 
suggested in Refs. (10, 11, 56) can yield some more information and may shed light on this 
issue. 

Long e t  al. (16) studied the quasicleavage fracture mode for hydrogen charged high-strength 
steel 30CrMnSiNi2A loaded in the cantilever bending test. The scaling of vertical profile 
lengths was analyzed using eq. (5) with ruler lengths from 1 to 150pm. Again an inverse 
sigmoidal curve was obtained with a pronounced quasi linear central part. A linear fit of  its 
slope gives H = 0.91 _ 0.01 and this value is shown to be the same in two perpendicular 
directions on the surface. The profile dimensions have been measured by Long e t  al. in these 
two directions, D~ and D I , who then proceeded to determine the surface dimension D using 
the doubtful expression D = D 2 + D~. Since they find D~ ~ D~, their calculation gives 
D = 2D', in disagreement with Mandelbrot 's rule D = D' + 1. 

The same steel in as-received state has been tested by Mu and Lung ~581 using essentially the 
same technique as described above. They observed scaling of the profile length over 1.5 
decades which corresponds to ruler lengths from 4 to 100/~m. They found slightly different 
values for D' for the profiles obtained by sectioning along the crack propagation direction 
and normal to it. These authors reported values of DII that ranged from 1.08 to 1.15 of  D~_ 
from 1.05 to 1.10 depending on the heat treatment. The average value of H is 0.91 + 0.05 
which agrees with the results of  Ref. (16). An interesting conclusion made by Mu and Lung (sS~ 
is that the fracture surface cannot be described as an isotropic fractal in the x - y  plane. The 
main difference between D~ and D~ is not in the absolute value of  these dimensions, but in 
their dependence on Klc. In both cases this dependence can be fitted by a linear relation, but 
increasing for D~ and decreasing for D~! This conclusion, however, is only qualitative. The 
range of  the scaling regime and that of  the fracture toughness differences were too small to 
produce notable systematic effect taking into account the experimental error of the 
measurement of D'. To the best of our knowledge no other group has reported similar 
findings. 

Mu e t  al. (s9) have recently suggested a new technique of the fractal dimension measurement 
and tested it in the study of  the same 30CrMnSiNi2A steel fractured at low temperatures. 

D' They claim that the slit island perimeter scales with its maximum diameter as ~ o c  d m a  x . The 
surfaces of the specimens tested in three-point bending at - 6 0 ° C  were analyzed using both 
this method and the conventional perimeter-area scaling relation, eq. (24). It was found that 
in the limit of very small yardsticks (shorter than 1/~m) the two methods agree with each 
other and produce H = 0.78 _+ 0.05. The situation is more complicated when yardsticks in the 
range from 2 to 6 ~m are used. The area-perimeter scaling method gives H that grows with 
the yardstick length, while the scaling in logarithmic coordinates, log d - l o g  ~ ,  deteriorates. 
The perimeter-diameter relation gives a yardstick-independent value of H = 0.67 that is 
substantially lower than that found with a smaller yardstick. The authors'  interpretation 
favours the perimeter-diameter scaling as the more accurate of the two approaches. The 
length scale dependence of the roughness exponent is explained by the presence of the two 
different fractal structures. We should also note that the values of H reported in this work 
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are generally lower than found previously for the same material under different testing 
conditions. (58~ 

Ray and Mandal (2°~ investigated transgranular cleavage of structural high-strength low 
alloy steel (HSLA) fractured in impact tests at temperatures from - 5 0  to -20°C.  Both the 
SIM and the vertical sectioning method were used to evaluate D. The vertical sections were 
analyzed using eq. (5) for profile length scaling using 6 in the range from 3.7 to 100/~m. The 
log L- log  6 plots were highly non-linear for all samples displaying once again an inverse 
sigmoidal behaviour. A linear regression analysis gave H = 0.96-0.99, though the slope of 
the nearly linear part of the plot would produce somewhat lower values, H = 0.96-0.99, 
though the slope of the nearly linear part of  the plot would produce somewhat lower values, 
H = 0.90 0.95. The SIM data were entirely misinterpreted because a wrong area perimeter 
relation was used (see Section 2.3). By re-analyzing their results using eq. (24), we have found 
that H ranges from 0.12 to 0.67. The value of D found in Ref. (20) from SIM was observed 
to decrease with the increase in the fracture toughness. According to Lung and coworkers ~s'23~ 
this may indicate that the ruler lengths were too large for the SIM analysis. It should be noted 
that the data in the plot of log d vs. log ~ were sufficient for reasonable statistical analysis 
for the two samples only, with H = 0.50 and 0.67. Therefore, in our opinion, the SIM results 
in this work indicate that H = 0.6 ___ 0.1. In view of the low data quality any conclusion 
concerning correlation between D and Klc could be only tentative. 

Przerada and Bochneck (6°~ measured the fractal dimension of a low-carbon microalloyed 
steel 22G2B quenched at different rates and fractured in three-point bending. They used the 
vertical sectioning method, eq. (5), and observed scaling in the yardstick length range from 
0.01 to 2 ram. The calculated roughness exponent was in the range from 0.86 to 0.95. The 
bainite-martensite structure was found to have higher fracture toughness and lower fractal 
dimension than the ferrite-pearlite-bainite mixture. No conclusions on the relation between 
D and Jm could be drawn in view of presumably different failure mechanisms for different 
phase compositions. 

An interesting analysis of a fracture pattern is reported by Horvath and Herrmann (6°~ for 
corrosion cracking observed in a variety of alloys including Inconel 600, Monel 400, 
aluminium alloy 7079-T6, ternary AI-Mg-Zn alloy. They evaluated the fractal dimension 
from digitized images of two-dimensional cuts through stress-corrosion cracks using a 
modified version of the box-counting algorithm. They have found that H = 0.62 +_ 0.05 
describes the roughness of the cracks in all the materials that these authors have studied. This 
technique is not quite equivalent to the vertical sectioning of the fractured sample, as their 
investigation is based on cutting a sample with an already developed crack pattern, but before 
the final fracture event. 

Krupin and Kiselev reported another study of corrosion-induced brittle intergranular 
cracking of HSLA steels 4130 and 4340, which were fractured at room temperature in 
the four-point bending test. (2L22~ The vertical sectioning method for the profile length scaling 
(eq. (5)) gave H = 0.84-0.94 for 4340 steel. The conclusion reached in Ref. (21) concerning 
inconsistency between these values and the SIM results seems to be based on mis- 
interpretation of  the area-perimeter relation. Using data from Ref. (21) and the correct form 
of eq. (24) we have concluded that in this study H = 0.75-0.86 for 4340 steel and 
H = 0.82-0.94 for 4130 steel. The cleavage fracture of the HSLA steel after impact test in 
liquid nitrogen produces H = 0.80 + 0.05. 

Long e t a / .  (62) studied a high-strength steel 30CrMnSiNi 2 fractured in stress--corrosion 
cracking mode. We remind the reader that this technique involves cyclic bending loading 
applied to the specimen immersed in a corrosive environment. The environmental medium 
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used by Long e t  al.  was distilled water. Subcritical crack propagation surface was analyzed 
using the vertical sectioning method and eq. (5a). The profile length was measured with ruler 
lengths from 1 to 100 #m. The L (6) plot was found to be linear for approximately one 
decade. Different modes of  fracture have been observed according to the scanning electron 
microscopy data, and these modes were confirmed by measurements of the stress intensity 
factor. They found H = 0.92 + 0.02 for the purely brittle fracture, which drops to 0.89 _ 0.02 
at higher K~ when a quasicleavage fracture and microvoid coalescence become operative. It 
was therefore claimed that D increases with KI. But the short length scales over which a fractal 
dimension could be seen is quite small. No analytical fit of  the dependence of  K~ on D was 
attempted in this case by the authors. However, trying to fit their data we find that: 

Klc oc K0 exp(fl(D' -- 1)), (31) 

with a positive coefficient fl ,~ 30 _+ 6. The high value of fl simply reflects the typically small 
magnitude of  the quantity D' - 1 (of order 0.1). It is worth mentioning that the values of H 
reported by the authors agree well with the results obtained for the same steel under different 
fracture conditions. (t6'Ss) This may reflect either the underlying physics of  the fracture process 
or the limitation of  the profile length analysis technique. 

Fahmy e t  a/J 63) investigated the correlation between the value of  D and the fracture 
toughness of  V3Au intermetallic compound with different oxygen contents. The samples 
contained variable amounts of  the AI5 phase and of  the L'I  2 phase, with the concentration 
varying over the entire range between either of them being in a single phase structure. The 
L'I  z phase has a metal perovskite structure and is produced and stabilized from a more 
complex A15 structure by interstitial addition of  oxygen. The A15 phase is more brittle and 
its value of  the K~c increases toughness, that was measured by an impact test at room 
temperature. The recording step for the analysis of the roughness was 3/~m which may have 
been too large for sampling grains with a typical size of  30 pro. The resulting value of H was 
in the range from 0.40 to 0.53 depending on the heat treatment. The accuracy of  these results 
is rather low in view of  the non-linear character of  the l o g p - - l o g f  plots. 

Fractal analysis of  single crystals of molybdenum (65) and chromium (66) fractured at room 
temperature and at - 196°C  has been performed using STM and SEM. STM images were 
recorded on a grid of 128 x 128 points with a scan length ranging from 16 nm to 8 #m. The 
power spectra reported for Cr surfaces (65) did not exhibit any significant scaling as one would 
expect for such coarse grid. (47) However, the box counting method which was applied to 
individual profiles produced linear plots in logarithmic coordinates with scaling observed over 
about two decades. The roughness scaling exponent was 0.95 _+ 0.04 for both metals and 
depended on neither the scan range nor on the temperature of mechanical testing. The same 
value was found for molybdenum from analysis of  a three-dimensional SEM image restored 
numerically from a stereo pair. (65) In the latter case the image size was up to 30 #m. The 
scaling behavior disappeared only when the recording step of  the STM decreased to 0.125 nm, 
which is below the interatomic distances. Images at all scales show cleavage steps as the main 
structural element. These are supposedly due to crossing of  screw dislocations by a crack 
front. In case of  chromium there has been observed another family of  steps created by 
aggregation of  cracks originally propagating in different planes. (66) Surface regions with such 
steps were characterized by H = 0.84. All these results are somewhat surprising because 
usually 128 points are insufficient for an accurate determination of  scaling. Nevertheless, in 
this case very consistent results were obtained confirming scaling down to separations as low 
as 3 ]~. Also the value of  the scaling exponent in nanometer region is much higher than that 
reported by others. (44'47,56) We strongly suspect that at least the high resolution images analyzed 
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in Refs (65, 66) represent noise rather than the physical profile. The STM of the type 
employed in this study should be used in different operating regimes (bias voltage, scan rate, 
tunneling current) in order to obtain images with scan sizes that differ by three orders of 
magnitude. From the description given by the authors we conclude that this has not been 
done and the same setting parameters were used in all regimes. This had to lead to an increase 
of the noise to signal ratio of the high resolution images. 

To conclude this section, the values of H for brittle fracture surfaces have been found to 
span a wide range of  values from 0.6 to 1.0. The value of D appears in most cases to increase 
with K~c, more supporting than not the view that brittle materials with higher toughness tend 
to have more irregular fracture surfaces. It is important to note that this observation holds 
for values of fracture toughness that correspond only to brittle fracture. Further increase in 
toughness is accompanied by a change of the failure mechanism from brittle to ductile 
fracture (rupture). We summarize results for analyses of ductile materials in the next section. 

3.3. Ductile Fracture 

The first analysis of the roughness of a ductile fracture was carried out by Mandelbrot 
e ta / . ,  14) who studied a fracture surface of 300 grade maraging steel. Samples were fractured 
in an impact test and then the surfaces were studied by vertical sectioning using eq. (16) for 
the integrated power spectrum, and by SIM using eq. (24). The values of H were found to 
range from 0.72 to 0.90, depending on the heat treatment history. In that study D was found 
to decrease with increasing impact energy, as opposed to its increase usually reported for 
brittle materials. Notice that already in that seminal work the authors mentioned the presence 
of several linear parts in the logarithmic plots, a phenomenon that was later observed by other 
groups (e.g. Refs 14, 15) and which relates to a crossover behaviour as we discuss below. 

Dauskardt et al. (14) studied a ductile fracture mode when the rupture mechanism was via 
microvoid coalescence. This study was carried out on 31% Mn-steel that had undergone 
impact test at room temperature. The plots of log L vs. log 6 for vertical sections were found 
to exhibit two linear parts characterized by H = 0.85 + 0.02 and 0.94 ___ 0.02 which were 
measured using eq. (5) 

Another example of  rupture has been reported in Ref. (14), where an intergranular 
microvoid coalescence was studied for the low alloy A533B steel after hydrogen attack at high 
temperature. Impact fracture in liquid nitrogen revealed microvoid dimples and bigger 
fissures on the grain-boundary facets. We have derived three values of H from different scaling 
regions in the plot of  log L vs. log 6 of Ref. (14): 0.96 _+ 0.02, 0.88 +_ 0.02 and 0.93 _+ 0.02. 
The corresponding linear parts reflect the presence of  three microstructural elements with 
different typical size and spacing. 

A similar method based on the vertical sectioning and profile length measurement, eq. (5), 
was applied to Underwood and Banerji to study the surface of fractured AISI 4340 steel after 
different heat treatments. (15) The resulting plots display the familiar inverse sigmoidal shape 
with a linear part over at least one decade, yielding H = 0.93 +_ 0.05. There has been found 
a slight indication that D increases with Klc, as a drop of  0.02 in D was observed for a sample 
with temper brittleness (lower K~c value). However, the linear fit to the curves of log L vs. 
log 6 does not seem to be sufficiently accurate to support this observation with confidence. 

Tanaka reported results of  an extensive study of correlations between creep-rupture 
properties of heat-resistant alloys and fracture surface roughness. (67) He measured the box 
dimension of profiles obtained in the vertical sectioning method by covering them with either 
squares or circles. For  a fractal curve the number of covering elements should scale according 
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to eq. (2) in both cases. Experimentally Tanaka found that the square grid coverage produced 
a box dimension which was higher by approximately 0.1. He argues that the circle coverage 
is better suited for a system with the matrix-precipitate interface, although, if the scale length 
is sufficiently large, there is no reason why the two schemes should give results that differ by 
more than the error bars. 

Tanaka's paper seems to present the first report on the relation between fractal properties 
of fracture surfaces and geometry of grain boundaries in polycrystals. Indeed if this geometry 
is fractal it is plausible that brittle intergranular fracture that develop along the grain 
boundaries would produce a surface with a similar fractal dimension. On the other hand, 
transgranular fracture of the same material should, in principle, result in a different surface 
geometry. This idea was confirmed in studies of the following alloys: Ni-based Inconel X-750 
and Inconel 751, Co-based HS-21 and L-605, and a 21Cr-4Ni-9Mn steel. (67) Another set of 
data in this paper refers to carbon steels with the ferrite-pearlite structure. Creep--rupture 
tests were carried out in the temperature range from 600 to 1150°C for heat-resistant alloys 
and at 600°C for carbon steels. In all cases scaling was observed with linear regions in 
logarithmic coordinates. Unfortunately, this investigation covered a range of scales from 0.5 
to 20/~m, which is too short to determine the scaling properties to a good accuracy. Therefore 
we tend to regard the results showing fractality of the fracture surface and the grain 
boundaries down to 'interatomic spacings '(67~ as very tentative at best. 

Heat treatment which typically increases the rupture strength of heat-resistant alloys, also 
introduces visually serrated, rather than straight, grain boundaries. This was manifested in 
an increase of D from 1.01-1.05 to 1.05-1.23. An increase of the fractal dimension with K~c 
was also observed, but the scatter in the results of Ref. (67) is too high to justify the claimed 
analytical dependence of the fractal dimension on K~c. The summary of the roughness 
exponent values for these alloys is: 0.87 + 0.04 for 21Cr-4Ni-9Mn steel, 0.85 _ 0.04 for L605 
and 0.90 + 0.06 for HS-21, 0.93__+ 0.03 for Inconel X-750. Statistical error includes the 
difference between the characteristics of samples with different heat treatment history or 
fractured under different conditions. 

Tanaka also studied the dependence of the surface structure on the volume fraction of 
pearlite in carbon steels containing from 0.03 to 0 . 8 3 ° / o C .  (67) He carried out the analysis for 
grain boundaries between both similar and different phase components. The roughness 
exponent increases monotonously from 0.84 to 0.93 when the structure changes from ferrite 
to pearlite. Fracture in pearlite occurs typically intergranularly, and indeed the fractal 
dimension of the surface follows closely that of the grain boundaries. The fracture surfaces 
of low-carbon ferritic steels, on the other hand, are characterized by values of D that are 
0.10-0.12 higher than for the ferrite-ferrite boundaries and only 0.02-0.06 higher than for 
the pearlite-ferrite boundaries. These results are consistent with the observed ductile fracture 
accompanied by substantial plastic deformation in the case of ferritic steels, and with 
quasi-brittle intergranular fracture of perlitic steels. Such a combined analysis of grain 
boundaries and of the fracture surface supplements successfully traditional qualitative 
description of different modes of fracture. (14'55~ 

Lung and Zhang carried out three-point bending tests at temperatures in the range from 
0 to -80°C in order to study fractal properties of the fractal surface of a low alloy 
30CrMnSiNi2 steel. (23~ SIM results were analyzed using eq. (2.24) for the perimeter-area 
scaling with the ruler length between 0.08 and 1.85 #m. For 6 in the short range they reported 
a value of H from 0.88 to 0.92. For higher values of 6 that were comparable to those that 
had been used by Mandelbrot e t  al . ,  ~4~ the corresponding values of H lie in the range from 
0.82 to 0.89. It is rather puzzling that in the latter case they also found a decreasing relation 
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between D and K~c of  the form (3.2) with fl < 0, while for 6 in the short range they found 
the opposite trend. This may suggest that size effects play a crucial role in this study, and 
the SIM analysis was probably carried out with an inappropriate choice of the ruler length. 

Wang et  al. reported a non-standard application of the SIM to analysis of the fracture 
surface of dual-phase ferritic-martensitic steel. (68) Fatigue tests at room temperature were 
carried out on notched samples, and the fractal dimension was evaluated using the 
perimeter-area scaling in SIM, eq. (24). The authors chose to study 'lakes within islands' 
pattern rather than the usual choice, 'islands within lakes'. (4) As we discussed in Section 2 the 
above two choices may not be equivalent for ductile fractures. Wang et  al. found that the 
exponent H lies between 0.78 and 0.91, and that it depends on the volume fraction of the 
martensite. This significant systematic variation of D with concentration may present one of 
the clearest evidences for the nonuniversal nature of H. An increasing linear relation was 
found between D and AKth, the fatigue threshold of  the form 

AKth = AK0 + ~ (D' - 1), 

with a = 68.0 MPa m I/2. 
The particular choice of the object for SIM analysis could affect the result significantly as 

illustrated by the investigation of Huang et  al. (25~ They used the impact test at room 
temperature to fracture samples of CK45 steel that had been tempered at different 
temperatures. Equation (24) was used for both possible interpretations of  the coastline. In 
addition they determined Dd using eq. (5) for profiles recorded using the secondary electron 
line scanning and by the vertical sectioning. A linear relation between D and toughness was 
found for both choices of  the object in the SIM analysis with slopes that were nearly the same 
in absolute value. However, the sign was positive for the standard choice, 'islands within 
lakes', and negative for the opposite choice. The values of  H for the two cases were 0.61-0.67 
and 0.73-0.78, respectively. ~25~ Although Huang et  al. presented a reasonable explanation for 
their observations, we think that in the case of microvoid coalescence one should still use the 
standard interpretation for analyzing the correlations between D and toughness because it 
should coincide with that given by the vertical sectioning technique, a5'26) The values of H that 
Huang et  al. found using eq. (5) for the profile length measurement differed significantly from 
the SIM data. The value of H was 0.77-0.85 from the SEM scanning and 0.87-0.91 from 
the vertical sectioning. However, the detailed analysis of the SEM data shows that the scan 
lines are extremely sensitive to the experimental details, and extreme caution should be 
exercised before one can claim that the scans represent the true profiles. (26) 

The latter values obtained from the vertical sectioning are in reasonable agreement with 
the results from analysis of  the fracture surface of an essentially similar carbon steel, DIN 
C45, which was carried out by Imre et  al. using the electrochemical method. ¢3~) Details of this 
measurement technique are given in Section 2.4. Gold replicas of an impact-fractured steel 
samples were prepared and the time dependence of the Faradaic current was recorded. The 
logarithmic plot I vs. t was found to be linear over an interval that corresponds to a ruler 
length between 5 and 100 #m. Using eq. (27) the value of H was estimated to be 0.85 + 0.04. 
The corresponding value of D decreased slightly with increasing impact energy, but this effect 
was statistically insignificant. More remarkably, different values of H were claimed to have 
been found for different parts of the fracture surface, a phenomenon that is more common 
for brittle rather than ductile fracture. 

We should comment that the electrochemical method used in Ref. (31) has a significant 
disadvantage for fractal analysis because it relies on preparing a replica ('cast') of  the rough 
surface. This effectively cuts off the lowest scale range of the fractal behaviour due to the 
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inability to press into the smallest and most irregular crevices. Since the interval of length 
scales is crucial for these studies this inevitably reduces the accuracy of the measured 
exponent. In addition to reducing the accuracy, this method can bias the results for H towards 
lower values (smoother surfaces). 

McAnulty et  aL (69) presented evidence that, contrary to the results of Ref. (25), the choice 
of interpretation of either lakes within islands or islands within lakes for SIM analysis need 
not necessarily result in different scaling behaviour. They studied high strength and 
high-toughness ASTM A723 (modified AISI 4340 with 0.2% V) steel fractured in the Charpy 
impact test and in a low-cycle fatigue test. Perimeter-area scaling was analyzed for SIM 
images, using both interpretations for the fatigue fracture and only islands for the impact 
fracture. These two kinds of fracture were studied on different length scales, from 0.01 to 
1 mm for the Charpy test and from 0.2 to 20 mm for the fatigue fracture. The scale difference 
implies that the two analyses pertain to regions at different distances from the initiating crack. 
These differences add up to paint a rather clear picture regarding the universality hypothesis 
in these materials, namely, different parts of the fracture surface and different length scales 
lead to different types of fracture. Not surprisingly, the roughness exponent is also different: 
0.75 __+ 0.05 for the impact fracture and 0.61 ___ 0.02 for low-cycle fatigue. It is interesting that 
analysis of either islands and lakes interpretation yields the same results to within the 
statistical error. 

McAnulty et  al. tried to use a new method within the SIM context/69) They analyzed the 
size distribution of the resulting islands and lakes. Mandelbrot ~) discussed this distribution 
in the context of geographical islands and suggested that for fractal structure this distribution 
should decay algebraically, N (a)  oc a D'/2, where N is the number of islands of area greater 
than a. The value of D" need not coincide with the coastline dimension D' for a 
multiconnected structure. McAnulty et  al. have found that for fatigue fracture: (i) algebraic 
distribution is approximately valid for both lakes within islands and vice versa, and (ii) the 
numerical values of D' and D" coincide for lakes within islands and differ by only 10% for 
islands within lakes. Their data suggest though that the values of D' obtained using eq. (24) 
are more accurate because they are based on scaling over 3-4 decades in area, while the 
scaling of the algebraic distribution spans less than two decades. 

Krupin and Kiselev analyzed Armco-Fe samples fractured in an impact test at different 
temperatures using SIM. (n) As we mentioned already the authors used the area-perimeter 
relation but unfortunately with a wrong expression for D. Recalculating from their data and 
using eq. (24), we obtain H = 0.94 and 0.90 for the ductile fracture at room temperature and 
in liquid nitrogen, respectively. The mixed fracture mode gives H = 0.90-0.98. 

An unusually large interval of the values of H is reported by Su et  al. for fracture surface 
of dual-phase ferritic-martensitic steels quenched from different annealing temperatures and 
subjected to impact testing at - - 2 5 ° C .  (7°) These authors used SIM and eq. (2.24) for the 
perimeter-area scaling, using a ruler length of 0.59/~m. An exponentially decreasing relation 
of the form of eq. (31) was found between the impact toughness, J, and the fractal dimension 
D, with fl = -0.67. The value of H was found to drop from 0.8 to 0.22 (!) as the ferrite 
contents decreases. 

Shibayanagi et  al. applied the vertical sectioning method to study a Cu-9.7% Zn alloy 
fractured in tensile test at temperatures from 20 to 700°C. (71) The divider dimension was 
estimated from the scaling of the number of dividers, N ( 6 )  = L (6 ) /6 ,  with the ruler length, 
6. The scaling parameter, H, is then given by eq. (5b). Usually two straight parts were 
observed in the log N vs. log ~ plot, and the crossover point was associated with the typical 
size and spacing between the dimples observed on grain boundaries due to void formation. 
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However, the difference between the corresponding slopes, 0.90 ___ 0.05 and 0.92 _+ 0.05, is well 
within the noise level. 

A simplified method to analyze the fractal structure of the dimple patterns of ductile 
fracture surfaces has been applied by Ishikawa to Fe-Ni alloy broken at 4 K. (72) Assuming 
that the dimples are circular he analyzed their size distribution using metallographic images 
of the surface. Scaling behaviour was observed for diameters from 1 to 50 ~m with a 
roughness exponent of H = 0.5, which suggests that these are Brownian surfaces. 

Jiang e t  al. (73) attempted derivation of the theoretical formula connecting the fractal 
dimension and the toughness Jlc of ductile materials. They followed Thompson and Ashby (74) 
in using the aspect ratio of the dimples on the surface, M = h / w ,  as the only descriptor of 
the surface morphology (here h and w are the dimple height and diameter, respectively). Jiang 
e t  al. further used the conclusion from Ref. (74) that the toughness increases as lnM and then 
tried to relate M to the fractal characteristics of the surface. In our opinion, the numerical 
relation between M and D suggested in Ref. (73) is not reliable in view of multiple 
uncontrollable approximations made by the authors. As a result, according to Ref. (73) the 
value of M lies between 0 and 0.5 for D' ranging from 1 to 2. The upper limit on M becomes 
0.3 for the typical values of D' reported in the literature. At the same time Thompson and 
Ashby have reported experimental results on M being between 0.5 and 1.0, and there is no 
physical reason prohibiting the case of M ~> 1. Furthermore, the analytic relationship between 
J~c and D derived in Ref. (73) predicts negative toughness unless the volume fraction of the 
void nuclei is well below 1%. The dependence deduced in Ref. (73) cannot be reconciled with 
the empirical relations that were used successfully to fit the experimental results, see previous 
section. 

The experimental data by Jiang e t  al. (73) refer to the vertical sectioning study of the fracture 
surfaces of AISI 310 stable austenitic stainless steel. The profile length for as-received and 
hydrogen-charged notched specimens fractured in tensile test was analyzed using eq. (5). 
Scaling was studied (and found) within one decade only, thus rendering all conclusions to 
be only qualitative. The roughness exponent was 0.85 for the uncharged specimen and slightly 
higher, 0.91, for the quasi-brittle fracture of the charged one. 

Bouchaud e t  al. studied a set of samples of 7475 aluminium alloy undergone different heat 
treatment, which were fractured in tensile test. (9'~3) Two different ductile fracture processes 
were observed, transgranular rupture with formation of voids on the boundaries of the grains, 
and ductile intergranular rupture. The SIM technique was used and a two-dimensional 
correlation function was evaluated for digitized images of islands. The authors used a 
somewhat different version of the two-point correlation function by correlating points on the 
perimeters of the resulting islands over the entire image. This correlation function appears 
to give a scaling regime that is longer than two decades and therefore makes this technique 
one of the best among those involving two-points correlations. The value of H that they have 
found was 0.80 + 0.03 irrespective of the rupture mode or fracture toughness. The latter 
result, however, should not be surprising since Klc varies very little from sample to sample 
in that study. Usually Kjc has to span at least one order of magnitude in order to give a 
detectable systematic change of the fractal dimension. (4'2°'63'7°1 

Analysis of different aluminium alloys reinforced with particulate SiC and fractured in the 
fatigue test has been reported by Davidson. {75) Digitized photographs of vertical sections were 
used to find Dd using eq. (5). The value of H was found to be 0.86 +_ 0.07 in agreement with 
other results for A1 alloysfl ) No correlation was found in Ref. (75) between D and the fracture 
toughness. This is probably due to the participation of several fracture mechanisms in 
composites, namely, crack growth, plastic deformation and void formation. 
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Three different methods of  fractal analysis were used by Pande et al. to study fracture 
surface of  a titanium 6211 (Ti-6A1-2Nb-ITa--0.8Mo) undergone tensile testing. {'2) The 
vertical sectioning method gave H = 0.85 ___ 0.02 from eq. (5). The SEM line scan produced 
profiles with a similar value of  H = 0.85 + 0.05 (the same profile length analysis, eq. (5)). The 
area-perimeter relation of  the SIM, eq (24), gave H = 0.68 __+ 0.05 in clear disagreement with 
the other two methods. The log ~ - l o g  ~ was also much less linear than in other studies, 
casting doubts on this low value and perhaps pointing towards an unfortunate choice of  the 
ruler length. 

Pande et al. studied in Ref. (76) two titanium alloys, one of  them again a 6211 alloy, in 
a tensile test. The fractal dimension was found from vertical sectioning, eq. (5), and from SIM 
analysis. The log L- log  6 plots were nonlinear for all samples. Instead of describing the curves 
as a combination of  linear parts in the spirit of  Ref. (14), Pande et al. tried to fit them with 
parabolic forms or with arcs of  circles. (76) The authors give no explanation for this choice, 
and the lack of  any clue regarding how they arrived at the value of H = 0.93 + 0.04 from 
such quadratic fits casts in our opinion strong doubts on the accuracy of this value. Also, 
the paper does not make it clear what analytical relationship was used for the area-perimeter 
analysis in SIM. The authors refer to Ref. (4) when they report their method of  analysis, but, 
as mentioned above, eq. (24) was given there in a wrong form. To clarify this we have used 
their plots of log d vs. log ~ to estimate H and we have found H = 0.99 ___ 0.03, consistent 
with H = 1. In fact, for few samples the data was described with the values of D' < 1 (or 
H > 1). The reason for these results lies probably with a non-fractal behaviour of the fracture 
surface. If  so, this is a good illustration that the fractal description is only a hypothesis for 
fracture surfaces, although a popular and a viable one. Claims of  fractal behaviour have been 
made in many inappropriate cases as described by Hornbogen. (77) 

Further study of  a 6211 titanium alloy has been carried out by Friel and Pande (28) using 
the surface area measurement with a stereographic SEM technique, see Section 2.4. The 
samples were fractured in tension similar to Ref. (76). Digital images were obtained at 
magnifications spanning two orders of  magnitude in the length scale, and the surface relief 
was reconstructed numerically based on the optimum matching of  the images constituting a 
stereo pair. The surface area scaling with the ruler length, log S vs. log 6, has been analyzed 
using both images taken at different magnifications and area calculations performed on 
different grids of  points. The value of  D was then estimated from the linear regression analysis 
of  significantly non-linear plots. The plots could be regarded either as the intersection of  linear 
parts or as sigrnoidal curves, once more supporting our suspicion of nonfractal behaviour of  
the fracture surface of  this material. The roughness exponent extracted from the data of 
Ref. (28) is 0.85 + 0.10, where the uncertainty is due to the possible interpretation of the 
log-log plots as consisting of  few linear parts with different slopes. 

Richards and Dempsey measured the fractal dimension of  the surface of another titanium 
alloy fractured in a tensile test after different heat treatments. {~9) Again the wrong form of 
eq. (24) for log d vs. log ~ was used to estimate D from the SIM data. Using the proper 
relation we find from the data given in Ref. (19) that H = 0.92 + 0.03. The authors observed 
no correlation between D and neither tensile properties nor structural features. Since the 
samples did not differ in their toughness significantly, one would not expect any pronounced 
correlation to be found anyway. 

STM topographic analysis of  polycrystalline copper fatigued in compression was reported 
by Mitchell and Bonnell. (47) They used. eq. (16) to determine H from the integrated power 
spectrum and found H = 0.61 + 0.04. This value is lower than the typical results obtained 
on a micron-scale. But as we mentioned already in Section 3.2.1, there is an unexplained 
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discrepancy in their results between the scaling behaviour of  p ( f )  and P ( f ) .  Hence one 
should be cautious in accepting their numerical estimates. 

An application of  STM to fractal analysis of  steel fracture surfaces is presented by 
Denley {27~ following the method of  the area analysis described in Section 2.4. Neither 
microstructural information nor testing details were given in this paper. The analysis gave 
H = 0.93 + 0.10 for two fractured steel surfaces (both brittle and ductile). The accuracy of 
the measurement still leaves much to be desired, with the main problem being the lack of 
pronounced linearity in the plot of  log S vs. log 6. This could be due to two reasons: (i) the 
grid of  400 × 400 pixels is not fine enough for calculations with high 6 ;(47) (ii) this plot exhibits 
an inverse sigmoidal shape as do the majority of  the log L- log  6 curves. 

Jiang et al. (78) have applied the vertical section method to the study of fracture surfaces of 
7475 A1 alloy after superplastic deformation. The physical picture of material failure is very 
different in this case from the mechanisms discussed above. The superplasticity effect is 
achieved via accommodation of  the plastic deformation in the rotation of grains with respect 
to each other accompanied by their elongation. This process results in the deformation values 
of few thousand percent. During the deformation, however, the creation of cavities between 
grains occurs inevitably. Thus the failure is due to their nucleation, growth and interlinkage, 
and the vertical section of  the fractured specimen is the section through such cavities. As a 
result the profile is not a single-valued function, and the images are qualitatively similar to 
those recorded in the case of  crack-branching in brittle materials (~2) despite the very different 
underlying physics. Jiang et al. (78) calculated the fractal dimension using eq. (5a) for the profile 
length scaling which does not seem to be the best way to describe a curve with multiple 
overhangs. They found the values of  H in the range from 0.73 to 0.89 depending on the 
deformation conditions. The scaling was established in a relatively wide interval of the ruler 
lengths, from 0.5 to 60/~m. Their data suggest that the superplastic elongation increases 
nearly linearly with D. 

To summarize this section, there is a strong evidence that the fracture surface is self-affine 
for a variety of materials and models of  fracture. The roughness exponent H ranges in the 
literature from 0.6 to 1.0 for either brittle or ductile fracture mode. When comparing results 
obtained by different methods, one should use the proper relation between D and H, namely 
eq. (5b) or eq. (12b). We have reviewed many of the relevant reports and pointed out the 
degree of reliability of  different techniques. It is inherent in the problem that it is difficult to 
find a reasonably long linear part in the plot of log L vs. log 6. Namely, a scaling regime that 
spans more than two decades in length is rarely recorded experimentally. In our opinion the 
spectral analysis appears to be a somewhat better technique for vertical sectioning than the 
profile length measurement. However, the horizontal sectioning combined with analysis by 
SIM is in our view the most reliable method and its only drawback pertains to the choice 
of the image as islands or lakes in the perimeter-area analysis. Nevertheless, in many cases 
all these methods agree within the experimental accuracy. 

The profile length analysis carried out using eq. (5) deserves special attention. Reviewing 
all the results obtained using this method, we find that the measured value of H rarely falls 
below 0.85 irrespective of the method of the profile recording, the fracture mode and/or 
material properties. A marked difference appears between values of  H obtained from scaling 
of L(6 ) and from ar~y other method. An averaging over all the reports using the former gives 
H = 0 .91_  0.04, while an average of  the results produced by all other methods gives 
0.8 + 0.1. In general all the low values of  H reported so far originate from SIM, power 
spectrum and variation method analyses. This may also be related to the fact that the profile 
length scaling is usually the least linear in logarithmic coordinates. The resulting plot is either 
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inverse sigmoidal d5"16"2°) or quadratic, ~76) which is very similar to a crossover behaviour. ~4'14) 
Therefore this method produces plots that (i) are difficult for interpretation, and (ii) result 
in overestimated roughness exponent. These conclusions seem to hold also for the three- 
dimensional generalization of  the method. ~27'28) In light of  the usually short scaling regimes 
and the scatter in data, multifractal analyses seem to be out of the question for fracture 
surfaces in general. 

One of  the main purposes of  this review is to address the crucial question whether there 
is a correlation between D and the properties of  the material. Our review suggests that this 
is indeed so and that the nature of  the correlations depend on the fracture mode. An 
increasing relation between fracture toughness and D has been found in all cases of  brittle 
fracture, although the scatter in the data does not allow one to find a universal analytical 
expression that can fit all measurements. Linear, square root and exponential fits were 
attempted with varying degrees of  success. One can, however, come across both increasing 
and decreasing such relations for ductile rupture. In some cases the decreasing relation is an 
artifact of  an inappropriately high value of  the ruler length used in the SIM. 

We should also note that due to the relatively short linear regimes in the log-log plots in 
the above studies, they can at most indicate self-affinity of the fracture surface rather than 
confirm such a behaviour. Although this assumption does not appear out of place in most 
cases, there exist few cases where the claim of  fractality is not supported by the experimental 
data from which the results are derived. This points to a serious and inherent problem 
regarding the interpretation of  the fracture surface as self-affine. The large body of work into 
general fractal systems led to a rule of  thumb, which places existence of at least two decades 
of  linearity in log-log plots as a threshold that establishes scaling. Even disregarding the 
scatter in the values obtained for H in the studies that we have reviewed here, the 
measurements in the micron regime show at best two decades of  scaling, and often less than 
that, thus supporting only marginally the scaling hypothesis. This suggests that the actual 
physics of  fracture is different within the length scale range from 1 to 100/~m and outside 
this range. This can be due to either different governing fracture mechanisms or to different 
microstructural characteristics of  the material on these length scales. Moreover, the crossover 
length scales given above seem to depend also on the material and fracture type. Thus we 
are confronted with a unique situation of a possible scaling on a rather narrow range of length 
scales between 10 -6 and l0 -4 m. This observation may account for the large scatter in H, as 
well as for the origin for many of the controversies. This explanation also sheds new light 
on claims of  universality in roughness of fracture surfaces. First, it is difficult to define 
universality in such a narrow window. Second, even accepting that universality can be 
appropriately defined in such a window, it is difficult to define the upper and lower boundaries 
of  the interval and to agree on what determines the location of these boundaries. The 
resolution of  this question must be related to some physical mechanism and therefore to 
specific material properties. 

Acceptance of  this view suggests that we should look for materials that permit a wider 
window for scaling in order to understand the fractal geometry of fracture surfaces. The 
difference in the scaling of roughness at the length scale below the window is illustrated by 
STM analysis on the nanometer scale. This gives H that is consistently lower than that in 
the mesoscopic range. For  example, values of  0.6 _ 0.1 for the brittle MgO, ~44) 0.61 + 0.04 for 
ductile copper ~47~ or 0.43 for carbon ~18) are well outside the error margin for studies on the 
micron-scale for similar materials. 

In view of  these many technical and inherent difficulties it is reasonable to suggest a new 
approach, orthogonal to those used in the literature. The main aim of  these studies is 
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ultimately to relate the morphology of  the fracture surface to the mechanical properties of  
the material. This review shows that the roughness exponent H and the fractal dimensions 
are not good indicators due to their wide scatter. Therefore we search for a new descriptor 
that can characterize the structure independently of  these exponents. 

In the next two sections we give a detailed account of  such a scheme. In our approach we 
employ a new method of  analysis of  scale invariant structures that is essentially an adaptation 
of  a morphological correlator developed recently in Ref. (10) to the study of  fractures. 

4. A CORRELATOR FOR SCALE INVARIANT STRUCTURES 

The issue of characterizing fracture structures suffers from two inherent problems, as we 
have already mentioned: One is the limited range of  scales over which scale-invariance seems 
to exist, and the other is the large scatter in the values of  H and D. The latter is a severe 
handicap because, as we have shown in Section 3, in many cases different fracture mechanisms 
produce qualitatively different surfaces, which happen to have a similar D. Therefore one 
cannot expect D to suffice for characterization of  the structure of  the surface. This reasoning 
alone already suggests that attempts to relate D to material properties may be doomed to 
failure. All the above techniques of  analysis, as well as the presently existing methods of  
fractal analysis in general, suffer from a fundamental conceptual limitation: they all rely solely 
on information from two-point correlations in the system. The pair correlation function G(x) 
and the corresponding Fourier spectrum, described in Section 2.2.2, scale with an exponent 
that depends linearly on D. Quite generally, any probe that relates to the two-point 
correlation function can at most reveal the fractal dimension (or some other exponent 
linearly-dependent on it) and nothing more. The value of  H (or D ) has been indeed the goal 
in all the methods that we have reviewed. Therefore for a new approach to be useful it should 
address these limitations and hopefully improve on existing techniques in these aspects. 

Such a method has been recently outlined by Blumenfeld and Ball. TM o The derivation there 
was given in terms of  mass fraetals and density-density correlations. We can conform to those 
notations by establishing correspondence between the one-dimensional profile, h(x), and the 
distribution of  a measure, M(x) = h 2(x). The square of  the height is used so that we treat 
a non-negative quantity. Given a data set on a one-dimensional grid we choose a grid point, 
which we index as i, and construct concentric shells around it. The shells are chosen to have 
a uniform width in logarithm of  the distance r from i. Defining p = log r/log 2, we measure 
for each point i the mass, 6S~(p), in a spherical shell at the radius p from it. The average 
of 3Si(p) over all choices of  i is proportional to the traditional pair correlation function that 
gives the mean mass in a shell, but is a function of  p instead of  the usual r. 

We define now the relative fluctuations in the distribution of  the measure (mass) about 
point i in terms of  the relative shell masses, 

6S,(p) 
6tr, = ( f S ( p ) ) '  (32) 

where the angular brackets, ( ) ,  stand for an average over all possible origins i. Statistics of 
a self-similar fractal are invariant under dilational transformation r - - ,  r '  = ~.r. Therefore, by 
working in p-space we reduce the symmetry to translational invariance, namely, invariance 
under p ~ p '  = p + ln2. It follows: (i) that correlations of  6ai in such structures, which are 
on muhiplicative scales, can be treated with traditional tools in p-space, and (ii) that insight 
from decades of  analysis of  translational invariant systems can be applied to the present 
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analysis. A significant quantity that Blumenfeld and Ball (~°) have introduced is the correlation 
matrix, 

M (p, p') = ( 6ai(p )bai(p') ), (33) 

which was anticipated to be overall scale-invariant, namely, M(p,  p')p oc 5f(p-p'). This 
form is equivalent to the three-point correlation function of the system in p-space. Thus 
defined the function ~ represents an average of relative shell masses. This formulation is 
straightforward to generalize for objects embedded in higher Euclidean dimensions. °°) For 
later use we rewrite eq. (33) in a form modified to analyze surfaces: ~53) 

M(p ,  p ')  = ([h (r~) - h (rz)]Z[h (rl) - h (r 3)]2)1r~ r21 = 2p;Ir, r 31= 2p' (34) 
( [ h  ( r , )  - h ( r2 ) ]2 )~ , ,  _ r2 ~ = 2~ ( [h  ( r , )  - h ( r3 ) ]~ )~ , ,  _ ,3 ~: ~," 

Several two-dimensional isotropic and fractal systems were generated numerically and 
studied in Ref. (10), using this method: a 4000-monomer-long self-avoiding walk, a 4096 
particle cluster-cluster aggregate, a sample of 104 particles chosen randomly from a 
105-particle diffusion-limited aggregate, and disordered Cantor sets. Two main conclusions 
should be mentioned: (i) The correlation matrix of  a scale-invariant system should exhibit 
lines parallel to the diagonal. This follows from the fact that correlations in such system must 
depend only on relative separation I P-P'I and represents a fingerprint of a fractal structure; 
(ii) The corresponding functions L,e show nontrivial features that yield information on the 
structure of the system. Typically £P starts from a value larger than one, and decreases to 
eventually saturate to unity for I P-P'I larger than some characteristic value 2s. This means 
that when r'/r > exp(2s) subsets of  the structure on different scales are uncorrelated. The 
values of  2s, as well as the detailed behaviour of 5¢ for I p - p ' l  < 2s, were found to differ from 
system to system, even though some examples were constructed to have very similar fractal 
dimensions. Thus M and &o provide an analytic tool to distinguish between different 
signatures of fractal patterns with similar values of D. 

Therefore this description seems to overcome all three difficulties mentioned above: (i) It 
can confirm existence of scale-invariance by inspection of M; (ii) It is sensitive to the signature 
of the fractal structure beyond the fractal dimension; (iii) It reveals information that is 
unattainable by a two-point correlation function. 

5. S T M  S T U D Y  OF FRACTURE SURFACES 

The scanning tunneling microscopy (STM) was invented primarily as an instrument for 
high resolution study of surface structure on atomic level. ~79~ However, its operational 
simplicity made it a popular tool for investigations on the micron scale, which is a low 
resolution regime of the STMJ 8°) STM is an attractive method for fractal analysis at the lower 
limit of  the roughness length scale because the surface images are conveniently recorded in 
a digital f o r m .  (27'44'47) This technique also enjoys the advantage of  being nondestructive since 
no sample sectioning is involved. Moreover, STM does not require as extensive a sample 
preparation as vertical sectioning or SIM techniques. 

The price to pay for these attractive features is relatively low. First, there is a fundamental 
problem of  the image being a convolution of the true profile with the shape of the tip. If  there 
are sharp protrusions on the surface then the recorded image represents multiple tip images 
rather than a picture of  the surface. ~8°'8~) Such a situation is rather improbable for fracture 
surfaces, but there exists the possibility that the spectrum of the profile can be distorted as 



FRACTURE SURFACES 455 

a result of  convolution. This effect would not be present for an ideally sharp tip. For  
reasonably sharp tips that allow reproducible and reliable imaging the convolution is believed 
to be an insignificant source of error. (47) An error is also introduced due to the unavoidable 
noise in both scanning and recording circuits. This noise and its influence on the results can 
be analyzed quantitatively, see Ref. (47) and below. Another problem of  STM is that the 
standard equipment allows maximal lateral displacement of the tip of  order of  10 #m only, 
thus the length scale over which the analysis is carried out is necessarily different than that 
used by other methods. However, it is possible to build an STM that combines usual high 
resolution scanning with a coarse drive capable of  scanning over the 20 mm x 20 mm area. (82) 
The first application of  such device to the problem of the crack opening in brittle materials 
shows its great capacity for the analysis of fracture surfaces382) Scanning within the limits 
given above with scanning steps from 50 to 500 nm (82) would be very useful in producing 
images most suitable for the analysis of fracture surfaces. 

We use STM here to address the following issues: (i) Is the fractal description applicable 
to cleaved fracture surfaces down to nanometer scales? and (ii) Can we probe the difference 
in scaling behaviour of  surface regions with different roughness (mirror, mist, crack branching 
zone). For  completeness, we use both traditional methods of  fractal analysis, Sections 2.2.2 
and 2.2.3, as well as the correlation scheme outlined in Section 4. 

FIG. l(a). 
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FIG. 1. SEM images of the tungsten cleavage surface: (a,b) backscattered electrons; (c) secondary 
electrons. 
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5.1. Experimental Details 

Brittle fracture surfaces of pure tungsten single crystals were prepared by impact fracture 
of  notched samples cooled in liquid nitrogen. The SEM micrograph of  a typical (001) cleavage 
surface clearly shows a fiat mirror region followed by a mist and a microcrack branching zone, 
Fig. 1. An interesting feature is a set of parallel steps in the mist zone. We carried out separate 
analyses for these three regions. We studied also the (0001) surface of the highly oriented 
pyrolithic graphite (HOPG) obtained by exfoliation (pencil glide). 

The constant current images were recorded in a 400 × 400 pixel format using commercial 
STM operating in airfl 3) We studied images at two magnifications with scan length of 7140 nm 
(the maximum scan size of the specific STM that we used) and of  714 nm. Therefore we 
covered more than three orders of magnitude in lateral separation with the shortest sampling 
step being 1.8 nm. Images were obtained with a tungsten tip at sample bias of 20 mV and 
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FIG. 3. The pair correlation function, G (x): (a) tungsten fracture surface; 1--mirror, 2--crack 
branching region, 3--mist, 4--noise signal acquired at 300 mV, 1 nA; (b) graphite fracture surface. 
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tunneling current of 2 nA for graphite, and either + 500 or - 300 mV bias and l nA current 
for tungsten. The only post-acquisition filtering was the subtraction of the least-squares fitted 
plane from all images. Representative examples of the surface morphology are shown in 
Fig. 2. 

The issue of the statistical reliability of STM data for fractal analysis was discussed in 
Ref. (47). The main points of concern are the number of sampling points and the noise to 
signal ratio, and it is therefore best to use profiles containing at least 1000 pixels. 
Unfortunately, to the best of our knowledge, such an option is not available on any 
commercial STM. (79) We monitored the noise level in the image using the method similar to 
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FIG. 4(a,b). 



F R A C T U R E  S U R F A C E S  461 
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FIG. 4(C). 

F~G. 4. The power  spectrum, p ( f ) :  (a) tungsten; 1- -mir ror ,  2---crack branching,  
(b) tungsten; l - -mi s t ,  2--noise;  (c) graphite. 

3--noise;  

that described in Ref. (47). The signal due to sample drift and due to the noise in the voltage 
amplifiers was obtained with an immobile tip. All STM parameters were adjusted as for 
proper scanning, and the resulting image was recorded in the standard STM format. For the 
purpose of the analysis we treated these 'noise images' as real images and consequently we 
discarded those STM pictures for which the ratio of the signal power spectrum to the 
spectrum of the noise image was less than 100. The images taken at a small scan size (70 or 
35 nm) were noisier than those shown in Fig. 2, and therefore could not be used for the 
analysis. 

For statistical reasons and due to computational limitations we preferred one-dimensional 
analysis of profiles to two-dimensional analysis of the surface. The two scanning directions 
of the tunneling microscope (the slow and the fast scanning directions) are not equivalent and 
they have different spectral components of noise. Although we have actually calculated 5a 
in both directions for some images, in most cases only the fast scan profiles were used. 

For each image we analyzed the following functions, averaged over 400 profiles: the pair 
correlation function, G (x), the power spectrum, p ( f ) ,  and the return probability histogram, 
R (A). The roughness exponent was calculated from the slopes of linear parts of the log-log 
plots of these functions according to eqs (12), (14), (16) and (19), respectively. We also 
constructed the correlation matrix M and the 5a-function and analyzed them along the lines 
outlined in Section 4. 

5.2. Experimental Results 

We present in Figs 3-6 the averaged functions G(x),p(f), P(f) ,  and R(A) for graphite 
and for different regions of fractured tungsten surface. Each plot is marked with a value of 
H obtained from the slope of the linear part. Similar plots are given also for few noise images. 
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The intensity of  the noise signal is few orders of  magnitude lower than that of the recorded 
physical images, and therefore does not interfere with the spectral analysis. But the return 
probability histogram is not directly related to the amplitude of  the signal. Therefore, from 
Fig. 6 alone we would not distinguish between the noise and the real signal. 

Inspection of  the power spectra of  the graphite surface shown in Figs 4c and 5c leads to 
H = 0.42 + 0.04. The respective log-log plots do not display very long linear parts, especially 
for the higher resolution image (Fig. 2g). The same is true for the pair correlation function 
shown in Fig. 3b. The latter is characterized by H = 0.34 for the 700 nm scan and H = 0.58 
for the 7000 nm scan. As we can see from the picture taken with the lowest resolution possible 
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FIG. 5. The integrated power spectrum, P ( f ) .  Notat ions as in Fig. 4. 

for our STM, Fig. 2f, the graphite surface is irregular and contains a set of  steps and ridges 
of seemingly arbitrary heights and orientations. At higher resolution there is usually no more 
than one pronounced feature, and other corrugations are on the atomic scale. These 
atomic-size corrugations are outside the fractal regime, and thus we can estimate the lower 
length-scale for scaling behaviour of the roughness of  graphite surface to be at approximately 
100 nm. 

The first clear observation to be made for cleaved tungsten surface is that the least 
corrugated region, the mirror, cannot be described as a statistical fractal. All methods of 
analysis consistently suggest that for this part of the surface H ~ 0. We note that indeed the 
integrated power spectrum varies as l o g f  rather than having a power law scaling. 

A common feature of all other tungsten images is the presence of a structure of nearly 
parallel cleavage steps similar to those observed previously in STM study of brittle fracture 
surface of molybdenumY ) These steps are the most pronounced microstructural element in 
our 700 nm scans. The difference between the regular stepped mist region and the crack 
branching part can be seen in the magnitude of corrugations between steps, see Figs 2c and 
2e. The spectral analysis of  these images reveals essentially linear scaling in logarithmic 
coordinates as shown in Figs 3-5. The roughness exponent is 0.66 + 0.08 for the crack 
branching zone and 0.60 _+ 0.10 for the regular stepped region. 

In lower resolution tungsten images, Figs 2b and 2d, the steps appear as the secondary 
structural element imposed on a larger scale surface relief. This is manifested in Figs 3 5 for 
the mist region taken at two different length scales. In the crack branching zone the roughness 
of the surface is sufficient to blur out the steps as the main characteristic feature of the 
structure on 700 nm scale. This also corresponds to the short scale behaviour of G(x) and 
of p(f)  for 7000 nm scan, shown in Figs 3a and 4a, that are characterized by H = 0.60, 
similar to the scaling of the higher resolution image. As the scanning length is increased to 
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Fio. 6. The return probabil i ty his togram,  R (A). Nota t ions  as in Fig. 4. 

7000 nm, the regular stepped region exhibits nonlinear logarithmic plots, see Figs 3a and 4b. 
This change of behaviour could originate from the relatively short record length of 400 points, 
which may not be sufficient. Better statistics may enable to observe the change of the slope 
due to the change of the dominant element of structure as reported earlier by several 
authors.(4J4) 

The pair correlation function, G(x), can be calculated directly from eq. (8), with L being 
the scan length. We carried out such calculations in order to check the numerical stability 
of the conventional procedure based on the inverse Fourier transform of the power spectrum 
as given by eqs (13b) and (9). The only difference between the behaviour of the plots of G(x) 
estimated by these two methods appears to be at separations between the behaviour of the 
scan length, which demonstrates their comparable performance for the analysis of the scaling 
behaviour. 
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To evaluate the length dependence of the profile width, o~ (Lo), defined in eq. (10) we carried 
out another numerical real space integration. The scaling behaviour in eq. (18) is inferred 
from the scaling of the power spectrum at low spatial frequencies. Unfortunately, this part 
of p ( f )  is the noisiest (see Fig. 4) and it is difficult to extract a reliable power law scaling 
from it. The question of how does the evaluation of H along the lines outlined in the previous 
paragraphs compare with the value that is derived from eq. (18) can be answered by 
comparing the plots of o92(Lo) and G(x) in Fig. 7. These show that the resulting values of 
H are indeed similar. In the direct measurement using eq. (10) the averaging was carried out 
over all possible intervals of different length Lo and over all profiles contained in the STM 
image. For an ideally scaling surface both plots in Fig. 7 should display the same slope equal 
to 2H. For tungsten surface we find that the two curves have indeed nearly constant and equal 
slopes and that they are similar over the entire range. This is a supporting argument of the 
scaling hypothesis, which also demonstrates the importance of cross-checking in roughness 
studies. 

The return probability histogram shown in Fig. 6 appears to be less reliable for our 
purposes than the Fourier-analysis based methods. This is especially true for the graphite 
surface where the scale of the corrugation heights is much smaller than on the tungsten 
surface. The analysis of the return probability histogram for the low magnification images 
of tungsten gives H = 0.42 _ 0.05 for the regular stepped region and 0.33 + 0.05 for the rough 
crack branching zone. There is a discrepancy between the results obtained by this method 
and by the Fourier analysis. This discrepancy increases for higher magnification images when 
the absolute scale of the height of the surface features becomes smaller and the noise to signal 
ratio increases. The return probability histogram averaged over two different scan lengths 
yields for the regular stepped region H = 0.45 + 0.06, and H = 0 .43_ 0.05 for the crack 
branching zone. The scaling parameter for the mirror region is correctly found to be close 
to zero. The roughness exponent for the graphite surface deducted from the return probability 
histogram (Fig. 6c) is difficult to relate to estimates from other methods. Most alarmingly, 
the return probability histogram gives a linear plot in logarithmic coordinates for the noise 
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image with H = 0.71! This is despite the fact that Fourier analysis does not show any scaling 
behaviour. 

We now proceed to report a study of higher order correlations by analyzing the STM 
images with the aforementioned correlation matrix A4 and the S-function. The plots of 9 
for different parts of the tungsten surface are shown in Fig. 8. We observe that generally 9 
starts from a large value and decays to unity over a scale of A,, which we have estimated for 
each particular plot. It is important to note that although in most cases & > 4, we find that 
for the visually flat mirror region 1, z 2. This serves as an encouraging check on the method 
since it indicates that correlations between scales decay faster in this region as one would 
expect. As a test system we analyzed a simulated flat surface with random noise (Fig. 8a). 
The plot of _S? shows that for the simple uncorrelated random noise the correlations between 
scales indeed die out much faster than in any of the real surfaces that we have studied. The 
rate of decay of 9 in the long range regime has the form 

L =a +A,exp(-pip -p’l), (35) 

1 

t 

p=s.o 
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FIG. 8. The 9 (p) function: (a) mirror region on tungsten (squares) and flat simulated surface with 
random noise (circles); (b) tungsten; stepped mist (squares) and crack branching zone (circles). Solid 
lines show the results of least squares fit with eq. (35); (c) graphite; scan size of 7140 nm (circles) and 

714 nm (squares). 
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where ~ = 1 for asymptotically uncorrelated structures. At least in one case it has been shown 
that p exactly corresponds to the so-called higher order correction to scaling usually 
encountered in finite-size fractal systems. I~°~ It was further conjectured that p indeed relates 
to correction to scaling for general scale-invariant structures. Due to the relatively short scale 
of  the data we did not a t tempt  to fit the curve for p. 

Analysis of  the £~°-function shows that size effects become pronounced at the short scales 
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where the width of  the shells becomes comparable to the grid size. We also note that the plots 
in Fig. 8 saturate to approximately unity (~---!)  over a typical range of  I P - P ' I  ~ 4 - 5 .  
Graphite is the exception in two aspects: (i) The saturation range is shorter, between 2 and 
3, indicating faster decay of  hierarchical correlations; (ii) The plot of ~ has a small hump 
at I P - p ' 1 ~ 5 . 5  (Fig. 8c). The latter can also be observed in the contour plot of the 
correlation matrix in Figs 9d and 9e. This value corresponds to log 2 5.5 ,~ 45, which indicates 
that there is a large contribution to the correlations from features occurring at this ratio of  
scales. This main characteristic feature in these systems consists of  the irregularities that are 
visible in Fig. 2f, which are on scale of  order of  2000 nm. The signal is therefore dominated 
by the ratio of this length-scale to finite-size characteristic features that appear at the small 
shell sizes, i.e. of  order of  ~40  nm. 

Inspecting the correlation matrix shown in Fig. 9, we observe that there is a significant 
difference between the morphologies of the mirror and the stepped regions of the tungsten 
surface. The only feature in the correlation matrix for the mirror is a steep ridge on the 
diagonal, see Fig. 9a. This effect is interpreted as indicating a very fast decay of the 
correlations. In contrast, the contour plots of  M for different images of  the stepped region 
(Figs 9b and 9c) reveal a much richer structure, indicating that the corrections decay much 
slower. Note though that the essential feature of  these contours is that they are clearly parallel 
to the diagonal, pointing to the scale-invariant nature of the surface. 

To summarize our results in this section, we carried out an extensive analysis on STM data 
in the nanometer scale, using many of  the aforementioned different methods. These results 
show unambiguously that the mirror region of  the tungsten fracture surface is microscopically 
flat and cannot be described as a fractal. We find that the regular stepped mist region is indeed 
self-affine with a roughness exponent H = 0.46 + 0.10, while for the rough track branching 
zone of  tungsten surface H = 0.61 _ 0.10. The scaling interval is, like in almost all other 
studies, not larger than two decades, which lends more weight to our analysis of third order 
correlations. The scale-invariant description is less satisfactory for the graphite surface. 
Although in this case the usual analysis of  pair correlations indicates a possible self-affine 
surface with H = 0.48 _ 0.10, the correlation matrix for this surface exhibits too complicated 
a structure to be consistent with a simple fractal. 

In all cases we find that the values of  H is substantially lower than the roughness exponent 
in the mesoscopic regime, which agrees with previous conclusions from STM studies. ~44'47) This 
indeed suggests that the fracture processes in the two regimes are fundamentally different. 
Further theoretical investigation into this issue is required to explain exactly why nanometer- 
scale fracture are generally smoother than fractures on the mesoscopic scale. 

6. SUMMARY OF CONCLUSIONS 

We presented in this paper an extensive review of  existing techniques for the analysis of  
fracture surfaces and of the results reported in the literature for a variety of  materials. Our 
original intention was to include all the reliable data available so far, but new results in this 
field appear at such a rate that the data review section is doomed to become incomplete even 
before the publication. Nevertheless, we hope that our critical analysis of  the existing status 
of  the research will be useful for: (i) better understanding of  the fundamental processes 
that lead to formation of  fracture surfaces; (ii) determining the connection between the 
characteristic signatures of  the fracture structures and the materials properties. 

This review demonstrates quite clearly that there is no universal value of  the roughness 
exponent that holds for all materials under arbitrary fracture conditions and on any length 
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scale. The first difficulty originates from the fact that the entire scale-invariant behaviour 
spans only two decades, which is the lowest possible range of scales that supports scaling. 
But the strongest evidence against universality comes from the large dispersion of the results 
for H in the mesoscopic regime that exist in the literature--between 0.6 and 1. Such a spread 
in the exponent  represents a very broad distribution of the underlying experimental data and 
is difficult to reconcile with the hypothesis of universality. 

This explains why there is still no agreement regarding the relation between the roughness 
exponent (or the fractal dimension of the fracture surface) and fracture toughness or any 
other single mechanical property. There is however a wide-spread consensus that is supported 
by most of the results that brittle fractures usually exhibit higher fractal dimensions for 
materials with higher toughness. In contrast, for ductile fractures, if there is some such 
correlation, it is very difficult to determine whether the roughness exponent increases or 
decreases with toughness. A good news, however, is that the scaling hypothesis has been 
firmly established by most studies and for many materials. 

Fractal analysis of fracture structures is still a new and rapidly developing field that needs 
new ideas and new techniques. The above conclusions suggest that there is still much work 
to be done in this field for both physicists and material scientists. A challenge to the former 
community is to identify and then understand the principles that govern the mechanisms that 
lead to particular fracture characteristics. Specifically, this problem involves study of the 
short-time and long-time crack evolution within dynamical theory of fracture. The lack of 
fundamental understanding of this issue is sharpened by the wide scatter of results. One of 
the problems that needs to be studied is what causes the differences between the nano- and 
the micrometer scales. From a different angle, the main goal of materials scientists in this 
context is to find clues in the structure of fracture surfaces to the fundamental material 
properties. The conclusion of this review that fracture surfaces are not universal should come 
as good news to this community. Namely, universality would doom such a quest because its 
very existence would mean that there can be no correlations between material's properties 
and the scaling behaviour. A complication for the purposes of this community is the fact that 
the scaling regime is rather limited. This, combined with the wide dispersion of the values 
of H, suggests that scaling analysis alone is not sufficient neither to characterize fractures nor 
to correlate their structure with toughness or other mechanical properties. 

To assist with this problem one possible addition to the tool kit of workers on this problem 
is a scheme for the study of higher-order correlations for obtaining information beyond that 
contained in the single parameter of the roughness exponent. This would complement the 
traditional scaling analysis and can be very useful in characterizing fractures of similar 
roughness exponent but different morphologies. To initiate steps in this direction we applied 
here a recently-introduced correlation scheme that probes three-point correlations between 
hierarchical scales. This analysis indeed shows that there are details that are essential to the 
structures, yet which are not accessible to the usual scaling analyses. This direction should 
assist in search for model materials by providing more detailed information on the signatures 
fracture surfaces. Another approach would be to attack the problem of the limited scaling 
regime. For example, one can eliminate the influence of grain boundaries by using single 
crystals, which may lead to an increase of the scaling window. Unfortunately, the price 
exacted by using these materials is that they are anisotropic, which complicates the analysis 
and the very fracture process. Yet another possibility in this direction is to further study 
fractures in glasses. It seems to us that attempts to analyze properties of multiphase materials 
(composites, dual-phase steels, alloys with precipitation hardening) are premature at this 
stage, when we cannot yet answer fundamental questions for simpler systems. From the 
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numerica l  po in t  of  view, an  effort beyond simple m o d e l i n ~  7) is needed to unders tand  the 
p rob lem of  fractal cracks at least in brittle materials.  (32) Moreover,  we suggest that  more  
emphasis  should be pu t  on cross-checking of  the numerica l  models with real fractures, and  
under s t and ing  the ranges of  validity of  such models. 
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APPENDIX 

We consider here the effect of the subtraction of the linear background on calculated width, co, of the height profile. 
Our aim is to show that the least squares fitted slope of the background minimizes co. 

Consider a physical profile h(x)  and a corrected profile 

g (x )  = h(x)  - ax -- b. (AI) 

The width of h(x),  coo, given by eq. (10): 

~0 2 = <(h -- <h>)2> = <h 2> _ <h>2. (A2) 

Using (A1) and (A2) we can relate the widths of g and h by 

co2 = co2 ° + a(Lo<h > _ 2<xh(x) >) + a2L 02/12. (A3) 
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The width depends only on the slope a and not on the constant shift b. The difference between the widths is quadratic 
in a and is minimized for a -~ a~.:  

6 
a~.  = -~o (2(,xh(x)) -- L0<h >). (A4) 

The least square fitting procedure is in this case equivalent to minimizing <g2): 

<g2)=<h2> 2 a ( x h ( x ) ) - 2 b ( h > + ~ a 2 L 2 o + a b L o  . (A5) 

The solution is found in the usual way by differentiating (A5) with respect to a and b which gives: 

6 
a~f = ~ (2<xh(x)> - ~ <h >), (A6a) 

6 
b~r = 4(h > - ~ (,xh (x)>. (A6b) 

Relation (A6a) is identical to (A4), confirming that the same slope is obtained by either minimizing the width of 
the resulting profile or by carrying out conventional least squares fit to the tilted profile. 


