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Abstract
Understanding the structural evolution of granular systems is a long-standing
problem. A recently proposed theory for such dynamics in two dimensions
predicts that steady states of very dense systems satisfy detailed-balance. We
analyse analytically and numerically the steady states of this theory in systems
of arbitrary density and report the following. (1) We discover that all such
dynamics almost certainly possess only one physical steady state, which may
or may not satisfy detailed balance. (2) We show rigorously that, if a detailed
balance solution is possible then it is unique. The above two results correct an
erroneous conjecture in the literature. (3) We show rigorously that the detailed-
balance solutions in very dense systems are globally stable, extending the local
stability found for these solutions in the literature. (4) In view of recent exper-
imental observations of robust detailed balance steady states in very dilute
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cyclically sheared systems, our results point to a self-organisation of process
rates in dynamic granular systems.

Supplementary material for this article is available online

Keywords: non-equilibrium detailed balance, steady states stability,
granular systems, evolution equations

(Some figures may appear in colour only in the online journal)

1. Introduction

Granular matter is ubiquitous in nature and plays a major role in our everyday life. Its near-
indifference to thermal fluctuations has earned it a recognition as a new form of matter [1].
In spite of many decades of intensive theoretical, numerical, and experimental investigations
into this form of matter, new aspects of its rich and complex behaviour are being discovered.
The sensitivity of the large-scale behaviour and properties to the particle scale characteristics
and structure has hindered the modelling of granular matter to date [2, 3]. Consequently, of
key significance is the modelling of granular dynamic evolution and the mechanically stable
structures that such dynamics settle into. In particular, when the dynamics are quasistatic, the
steady-state dynamics determine those stable structures and it is on this type of dynamics that
we focus here.

Several methods have been proposed to describe and model the evolution of the underlying
structure during quasistatic dynamics [4–8]. A general way to describe mechanically stable
granular structures in two-dimensions (2D) is based on what is known as the cell order distri-
bution (COD) [9–11]. A cell is the smallest void (loop) in the system, surrounded by particles
in contact and its order is defined as the number of particles in contact surrounding it. During
quasi-static dynamics, the COD evolves by intergranular contacts being made and broken,
which split and merge cells, respectively. Such a process is shown schematically in figure 1.
The dynamic equations for the COD evolution are [12]:

Q̇k =
1
2

k−1∑
i=3

(pi,jQiQj− qi,jQi+j−2)(1+ δi,k−i+2)

−
C∑

i=k+1

(pk,jQkQi−k+2 − qk,i−k+2Qi−k+2)(1+ δi,2k−2)

+Qk

∑
all possible
processes i,j

(pi,jQiQj− qi,jQi+j−2) . (1)

In these equations, Qk is the fraction of cells of order k, referred to in the following as
k-cells. pi,j is the merging rate of i- and j-cells into an (i+ j− 2)-cell, qi,j is the rate of the
splitting of an (i+ j− 2)-cell into an i- and a j-cell, and C is the highest possible cell order
in the system. The factor 1/2 and the δ-functions ensure correct counting. The last term on
the right hand side is needed because the total number of cells changes with each merging or
splitting event, which changes the fractions Qk. Rattlers, which are particles with one or no
contact, were ignored in these equations, which is a good approximation for dense systems
with low-order cells. Including rattlers in the analyses that follow is possible, but the added
complication does not add much insight and we disregard them.
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Figure 1. A sketch of cellular splitting and merging events: when the circled contact
breaks, the two cells merge, 5+ 6→ 9 and when it is made the higher order cell splits,
9→ 5+ 6.

Wanjura et al [12] found that, under some conditions, the steady-state cell order transitions
of these far-from-equilibrium systems satisfy detailed balance, when the cell orders do not
exceed six, a result corrected later to five [13]. The steady states of the evolution equations were
also shown to be locally stable. Recent experiments on quasi-statically sheared 2D granular
systems [14] have revealed a surprising observation—they always settled into steady states that
satisfy detailed balance. Such robustness suggest that these steady states are not only stable,
but also may be unavoidable. Moreover, these observations appear to contradict the paradigm
that steady states of non-equilibrium dynamics cannot satisfy detailed balance [15]. Motivated
by these experimental observations, we analyse here equation (1) in detail. We investigate the
conditions for detailed balance and the properties of such steady states. We show that: (i) if
a steady state satisfies detailed balance in systems where C = 6,7 then it is the only possible
steady state; (ii) there is strong numerical evidence that, in systems where C = 6,7, or 8, only
one physical steady state is possible, whether or not it satisfies detailed balance; (iii) the steady
state in systems where C = 5 is not only locally but also globally stable. These findings provide
a partial explanation for the observed convergence to detailed balanced steady states in [14].

2. Analysis of the steady state solutions

2.1. General steady states

The back-and-forth processes (i)+ ( j)⇌ (i+ j− 2) are equivalent to chemical reactions in
a multi-component reactive system. Their net flux is ηi,j = pi,jQiQj− qi,jQi+j−2 and ηi,j = 0
when they are balanced. At steady state, the sum of all the processes,

∑
i,j η̄i,j, vanishes by

definition and equation (1) reduce to

0=
1
2

k−1∑
i=3

η̄i,k−i+2(1+ δi,k−i+2)

−
C∑

i=k+1

η̄k,i−k+2(1+ δi,2k−2) , (2)

in which the bars indicate steady state values.
Given C, there can be (C − 2)2/4 or

[
(C − 2)2 − 1

]
/4 processes, when C is even or odd,

respectively. Focusing on the even case, for brevity, it is useful to rewrite equation (2) as

H · η̄ = 0 . (3)

Here,H is a (C − 2)×
[
(C − 2)2/4

]
matrix and the vector η̄’s components are all the steady-

state η-fluxes. Thus, η̄ must exist within the null space of H. The normalisation constraint,∑
k Q̄k = 1, reduces the number of independent first-order equation in (3) to C − 3. Thus, by
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Figure 2. Two examples of detailed-balance steady states, for which C = 7 and θi,j =
θ0 = 0.5 and 2.

Bézout’s theorem [16] and, since ηi,j are quadratic in theQis, the maximal number of solutions
is 2C−3 for any given set of rates, pi,j and qi,j.

Below, we show analytically that, at least up to C = 7, only one of these solutions is
physical—the detailed balance steady state (when it exists), in which ηi,j = 0 for all i, j.
Indeed, an extensive numerical investigation over a wide range of parameters supports this
conclusion—all other numerical solutions included either imaginary or negative Qk fractions.

2.2. The detailed-balance steady state is unique

The uniqueness of the detailed balance steady state was established for C < 6 [12, 13]. We
now extend this result to systems comprising arbitrary orders. Defining θi,j = pi,j/qi,j, each
balanced process satisfies Q̄i+j−2 = θi,jQ̄i Q̄j. It follows that

Q̄k = Q̄k−2
3

k−1∏
i=3

θ3,i . (4)

The detailed-balance steady-state solution depends solely on the ratios θi,j and on Q̄3. The
value of Q̄3 can then be found from the normalisation condition:

Q̄3 +
C∑
k=2

{
Q̄k

3

k+1∏
i=3

θ3,i

}
= 1 . (5)

We note in passing that the values of θi,j are not independent because cells of order k> 5
can be formed by more than one process [17]. An example of a system in which detailed
balance is possible (indeed observed) is the experimental steady states observed in [11], which
satisfy θi,j = θ0 for all i, j. This gives rise to an exponentially decaying COD. Imposing such
a condition, we calculate explicitly the COD of the emerging detailed-balance steady state of
two systems in which C = 7 and θ0 = 0.5 and 2. These are shown in figure 2.
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Nevertheless, this dependence does not affect our following argument regarding the unique-
ness of the detailed balance steady state. Since the rates pi,j and qi,j must be non-negative then
θi,j ⩾ 0, for all i, j, and the left hand side of (5) is a monotonically increasing function of Q̄3.
Additionally, for C > 3, it vanishes at Q̄3 = 0 and exceeds 1 at Q̄3 = 1. Thus, only one solu-
tion exists in the range 0< Q̄3 < 1 and this is the only possible detailed-balance solution.
This conclusion holds for both odd and even values of C. It follows that, if a system evolves
into a detailed-balance steady state then that state is unique and independent of initial condi-
tions. This goes some way to explain the robustness of the recently observed detailed-balance
in [14].

2.3. The case C = 6

The next question is whether or not there also exist steady states that do not satisfy detailed
balance. There are

[
(C − 2)2 − 1

]
/4 or (C − 2)2/4 potential finite values of the fluxes η̄i,j to

determine from equation (2), for C odd or even, respectively. With only C − 3 independent
equations available, in the case of C = 5 there are two equations for two unknowns. It follows
that detailed balance is the only steady state for systems up to C = 5. Since such systems have
only two processes, 3+ 3⇋ 4 and 3+ 4⇋ 5, each must be balanced separately, as no cycle
is possible [13]. This detailed balance is then straightforward. However, since η̄i,j are under-
determined for C > 5, it was conjectured that, in addition to detailed-balance, such systems
support an infinite number of other stable steady states [12, 13]. To investigate this conjecture,
we re-examine the steady state.

Focusing initially on the case C = 6, there are four processes: η3,3, η3,4, η3,5, and η4,4, but
only three independent equations. Rewriting (2) as

−2 −1 −1 0
1 −1 0 −2
0 1 −1 0
0 0 1 1



η3,3
η3,4
η3,5
η4,4

= 0 , (6)

leaves one flux underdetermined. We parameterise the solution by η3,3 ≡ A:

η =


η3,3
η3,4
η3,5
η4,4

=


A
−A
−A
A

 . (7)

It should be noted that, for any finite value of A, this steady state involves a cycle, 4+ 4→
6→ 3+ 5→ 6→ 4+ 4 [15]. Using (4) and (7), the steady-state cell fractions are:

Q̄4 = (p3,3Q̄
2
3 −A)/q3,3, (8a)

Q̄5 = (p3,4Q̄3Q̄4 +A)/q3,4, (8b)

Q̄6 = (p3,5Q̄3Q̄5 +A)/q3,5, (8c)

Q̄6 = (p4,4Q̄
2
4 −A)/q4,4 . (8d)

Eliminating variables, and imposing normalisation, yields a cumbersome equation for Q̄3,
which in all but the simplest cases, can only be solved numerically. It is the dependence on
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the continuous parameter A that led to the conjecture in [12] that there is an infinite family of
solutions in these systems.

We show next that this is not the case, namely, if A= 0 is a solution then no other solu-
tion exists. Firstly, note that, when A= 0, θi,jQiQj = Qi+j−2. Eliminating Q4,Q5 and Q6 from
equation (8), we obtain θ3,3θ4,4 = θ3,4θ3,5.

Since pi,j,qi,j ⩾ 0 then equations (8c) and (8d) imply that θ4,4Q̄2
4 > Q̄6 and Q̄6 > θ3,5Q̄3Q̄5

when A> 0. Additionally, from (8b), we have Q̄5 > θ3,4Q̄3Q̄4. Taken together, these yield
θ4,4Q̄2

4 > θ3,4θ3,5Q̄2
3Q̄4. Now, using the detailed balance condition and eliminating Q̄6, we have

Q̄4 > θ3,3Q̄2
3, but (8a) implies Q̄4 < θ3,3Q̄2

3. We have arrived at a contradiction, which means
that A> 0 cannot be a solution. A similar chain of analysis shows that A< 0 is also impossible.
It follows that, if the detailed balance solution, A= 0, exists, then it is the only possible steady
state.

In the supplementary material, we use a similar analysis to show that the same conclusion
holds for C = 7. This conclusion improves on the conjecture in [12]. We believe that this line
of proof can be extended to C > 7, although not without substantial effort. However, a different
approach is required for a general proof.

These results, combined with the extensive numerical investigations reported below, and the
experimental observations in [14], lead us to conjecture that, when a detailed balance steady
state exists, it is the only possible steady state for any value of C.

2.4. Numerical investigation of non-detailed-balance steady states

The rates parameter space is infinitely large and most combinations of rates lead to non-
detailed-balance solutions (with detailed balance only possible if the relation established in 2.3
is satisfied, i.e. θ3,3θ4,4 = θ3,4θ3,5). To understand the nature of these solutions, we explored
the parameter space numerically (see also supplementary material). Starting with C = 6, we
tested the 48 = 65536 rate value combinations when each rate can assume any of the four
values: 0.1, 0.5, 1.0, and 3.0. For each combination, we found all the solutions and noted the
number of solutions. Unexpectedly, each combination gave rise to only one physical solution,
with all the others containing either negative or complex values of some Q̄k.

To test the potential generality of this surprising observation, we solved numer-
ically for the steady-state solutions in systems where C = 7 and 8. These have,
respectively, 6 and 9 processes and 12 and 18 variable rates. Owing to the required
larger computational resources, we tested only 6 rate combinations for C = 7:
{0.1,0.5},{0.1,1},{0.1,2},{0.5,1},{0.5,2},{1,2}, and in total 6× 212 = 24576 different
systems. In each test, the values of pi,j and qi,j can take either of the pair of values noted. For
C = 8, we used the set of rates {0.1,0.5} and {0.5,2}, and in total 2× 218 = 524288 different
systems. We found that in none of these systems was there more than one physical steady state
solution.

Based on these investigations, we conjecture that, for any choice of constant rates, there is
only one physical solution regardless of the upper order, C. In figure 3, we show an example of
the one non-detailed-balance solution when C = 6, for a set of rate parameters that also admits
five other non-physical solutions (listed in the supplemental material). It can be observed in
figure 3 that the difference between the breaking and making rates are the same for all rates. In
particular, the vertical offset from the detailed balance line are the same and equal to A. A typ-
ical figure for C = 8, for a system that also does not satisfy DB, is shown in the supplementary
material.
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Figure 3. The unique steady state for C = 6, with the parameters p3,3 = 2, pi,j = 1 for
all other i, j and qi,j = 1 for all i, j. The labels indicate the respective rates. The steady
state rates do not lie on the solid line and, therefore, the system does not satisfy detailed-
balance.

3. Global stability for C = 5

A linear analysis of the steady states of equation (2) has shown them to be asymptotically
stable [12], a prediction that has been supported experimentally [14]. This, however, does
not preclude possible limit cycles around the steady state away from the linear regime. We
investigate next the global stability of the solution and show that, at least for the dense system
comprising cells of orders 3− 5, no such cycles exist.

Using the normalisation condition to eliminateQ5, the independent evolution equations can
be written as

Q̇3 = (Q3 − 2)κ3,3 +R(Q3 − 1)κ3,4,

Q̇4 = (Q4 + 1)κ3,3 +R(Q4 − 1)κ3,4 ,
(9)

in which the rates qi,j and θi,j are assumed for now to be constant (more on this condition
below), R≡ q3,4/q3,3, κ3,3 ≡ θ3,3Q2

3 −Q4, κ3,4 ≡ θ3,4Q3Q4 +Q3 +Q4 − 1, and time is scaled:
t→ t ′ ≡ q3,3t, such that Q̇k = dQk/dt ′.

The fractions are constrained by Q3,Q4 ⩾ 0 and Q3 +Q4 ⩽ 1. We analyse equation (9)
within this region of the Q3 −Q4 plane, using the theorems of Bendixson and Poincaré–
Bendixson [18]. The former states that, in two-variables dynamical systems, ẋ= f(x,y) and
ẏ= g(x,y), if V(x,y) = ∂x( f)+ ∂y(g) is non-zero and has the same sign throughout a simply-
connected x− y domain, then no closed orbits can lie within that domain [18]. We define

V(Q3,Q4) = − 1− 4θ3,3Q3(1−Q3)− 3Q4

−R+ 3R(Q3 +Q4 − 1)

+ θ3,4R(4Q3Q4 −Q3 −Q4). (10)
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By the inequalities of the arithmetic and geometric means, (Q3 +Q4)⩾ (Q3 +Q4)
2 ⩾ 4Q3Q4,

we have

4Q3Q4 −Q3 −Q4 ⩽ 0 . (11)

Using Q3(1−Q3)⩾ 0, Q3 +Q4 ⩽ 1 and (11) in (10), we establish that

V(Q3,Q4)⩽−1−R . (12)

Since R> 0, V(Q3,Q4)< 0 throughout the region to which the system is confined. Thus,
according to the Bendixson theorem, this system has no limit cycles. Combining this result
with the established uniqueness of the steady state [13] then, by the Poincaré–Bendixson the-
orem, the limit set contains only that steady state [18]. Thus, the detailed balance steady state
is globally stable for any physical initial condition.

4. Conclusions and future work

To conclude, we studied, both theoretically and experimentally, the nature of the detailed-
balance steady states into which the non-equilibrium dynamics of granular matter has been
found to settle. We have proven that, for any maximum cell order, C, there can only be one
detailed-balance steady state. We have also shown rigorously that, if a detailed-balance steady
state solution exists up to C = 7 then it is the only solution.

Intriguingly, by solving the steady state equations numerically for 614400 systems up to
C = 8, we found that there is always only one physical solution, in whichQk is real and positive
for all k. We conjecture that the evolution equation (1) yield only one physical solution for the
steady state, which may or may not satisfy detailed balance. This conjecture is supported by
clear experimental observations of detailed-balance steady states for systems with C > 10 [14].

Next, we used the theorems of Bendixson and Poincaré–Bendixson to show that the detailed
balance solution of the dynamics of systemswith C = 5 is globally stable and no periodic orbits
exist. This may explain the robustness of such solutions observed experimentally [14].

It should be noted that, in our discussion, the steady-state rates pi,j and qi,j are constant, but
of arbitrary functional form, subject to the condition of detailed balance. However, they need
not be constant and evolve during the approach to the steady state.

Another intriguing implication of our results is the following. We have found that most
systems with C > 5, settle into steady states that do not necessarily satisfy detailed balance.
For example, solving and finding the only solution when C = 6, p3,5 = p4,4 = q3,3 = q3,4 =
q3,5 = 1, and q4,4 = 0.5, we find that not all ηi,j = 0, namely, no detailed-balance. Yet, the
experiments of Sun et al [14] reveal that, in a range of quasi-statically cyclically sheared 2D
granular systems, the steady states always satisfy detailed-balance. This suggests that the cell
breaking and merging rates in those experiments were neither arbitrary nor time-independent.
Rather, they must have evolved as the granular systems self-organised into values that satisfy
detailed balance. This seems the most plausible explanation for the emergence of detailed
balance in those experiments and could reconcile the discrepancy between those observations
and what appears to be a violation of the paradigmatic Klein principle [15].

Rate equations similar to (1) have been used for modelling many evolution processes. In
particular, in models of aggregation–fragmentation (AF). Nevertheless, there are some simil-
arities and differences between the granular dynamics we study here and those models. The
similarities are that our cell order fractions, Qk, are analogous to aggregate sizes and all mod-
els have transition rates. Additionally, many models of AF assume detailed balance, implicitly
or explicitly [19–23]. One minor difference is that the normalisation of our cell order fraction
takes into consideration the changing total number of cells, which gives rise to the last term
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in our equation (1). There are, however, more significant differences. One is that, unlike in
most of AF models, for example, we do not assume the mathematical forms of the steady-
state rates, pi,j and qi,j, subject to the condition that they satisfy detailed balance. This makes
our analysis more general and more applicable than the studies that make such assumptions.
Another difference is that most studies of AF dynamics simplify the analysis by allowing
the size of aggregates to tend to infinity, which is often not physical. In contrast, our ana-
lysis applies to arbitrarily finite highest order, C. The third difference is quite fundamental.
As mentioned, many models of AF processes assume detailed-balanced steady states. While
this phenomenon is well established for systems in equilibrium, the current belief in the com-
munity is that it cannot be satisfied in out-of-equilibrium steady states. Indeed, our motivation
to study steady states of sheared granular system is the surprisingly strong experimental evid-
ence in [14] of persistent detailed-balanced in the steady states of their granular dynamics. To
the best of our knowledge no such evidence exists for the non-equilibrium systems, to which
some AF models presume to apply. This also means that our results apply only to AF systems
either in strict equilibrium or where detailed balance has been established experimentally.

Data availability statement

All data that support the findings of this study are included within the article (and any supple-
mentary files).
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